A two-stage method based on extreme learning machine for predicting the remaining useful life of rolling-element bearings

被引:225
作者
Pan, Zuozhou [1 ]
Meng, Zong [1 ]
Chen, Zijun [1 ]
Gao, Wenqing [1 ]
Shi, Ying [1 ]
机构
[1] Yanshan Univ, Qinhuangdao, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Rolling-element bearings; Multivariate feedback extreme learning machine (MFELM); Small sample; Short-term prediction; Remaining useful life (RUL) prediction; RESIDUAL LIFE; PROGNOSTICS; DISTRIBUTIONS; DIAGNOSIS; SIGNALS; MODEL;
D O I
10.1016/j.ymssp.2020.106899
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Rolling-element bearing is one of the main parts of rotating equipment. In order to avoid the mechanical equipment damage caused by the sudden failure of rolling-element bearings, it is necessary to monitor the condition of bearing and predict its life. Therefore, a two-stage prediction method based on extreme learning machine is proposed to predict the remaining useful life of rolling-element bearings quickly and accurately. This method uses the relative root mean square value (RRMS) to divide the operation stage of the bearing into two stages: normal operation and degradation. Starting from the normal operation stage, according to the principle of univariate prediction, a feedback extreme learning machine model is constructed for real-time short-term prediction of bearing degradation trend. Once the predicted value shows that the bearing has entered the degradation stage, the sensitive features are selected as the input by correlation analysis, and the multi variable feedback extreme learning machine model, which takes into account the dual advantages of multivariable regression and small sample prediction, is constructed to predict the remaining useful life. The experimental results show that the proposed method has higher short-term prediction accuracy and faster operation speed in the case of limited learning sample size. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Research on Remaining Useful Life Prediction of Rolling Element Bearings Based on Time-Varying Kalman Filter
    Cui, Lingli
    Wang, Xin
    Wang, Huaqing
    Ma, Jianfeng
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (06) : 2858 - 2867
  • [32] Remaining useful life prediction of rolling element bearings based on simulated performance degradation dictionary
    Cui, Lingli
    Wang, Xin
    Wang, Huaqing
    Jiang, Hong
    MECHANISM AND MACHINE THEORY, 2020, 153
  • [33] Comprehensive Remaining Useful Life Prediction for Rolling Element Bearings Based on Time-Varying Particle Filtering
    Cui, Lingli
    Li, Wenjie
    Wang, Xin
    Zhao, Dezun
    Wang, Huaqing
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [34] Anomaly detection and multi-step estimation based remaining useful life prediction for rolling element bearings
    Qi, Junyu
    Zhu, Rui
    Liu, Chenyu
    Mauricio, Alexandre
    Gryllias, Konstantinos
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 206
  • [35] Remaining useful life prediction of rolling bearings by the particle filter method based on degradation rate tracking
    Fan, Bin
    Hu, Lei
    Hu, Niaoqing
    JOURNAL OF VIBROENGINEERING, 2015, 17 (02) : 743 - 756
  • [36] A novel two-stage method via adversarial strategy for remaining useful life prediction of bearings under variable conditions
    Liu, Yang
    Zhou, Guangda
    Zhao, Shujian
    Li, Liang
    Xie, Wenhua
    Su, Bengan
    Li, Yongwei
    Zhao, Zhen
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2025, 254
  • [37] An improved deep convolution neural network for predicting the remaining useful life of rolling bearings
    Guo, Yiming
    Zhang, Hui
    Xia, Zhijie
    Dong, Chang
    Zhang, Zhisheng
    Zhou, Yifan
    Sun, Han
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (03) : 5743 - 5751
  • [38] Abnormal symptom-triggered remaining useful life prediction for rolling element bearings
    Cheng, Yiwei
    Wang, Ji
    Wu, Jun
    Zhu, Haiping
    Wang, Yuanhang
    JOURNAL OF VIBRATION AND CONTROL, 2023, 29 (9-10) : 2102 - 2115
  • [39] Remaining Useful Life Prediction of Rolling Bearings Based on ECA-CAE and Autoformer
    Zhong, Jianhua
    Li, Huying
    Chen, Yuquan
    Huang, Cong
    Zhong, Shuncong
    Geng, Haibin
    Zhou, Yongquan
    BIOMIMETICS, 2024, 9 (01)
  • [40] A two-stage Gaussian process regression model for remaining useful prediction of bearings
    Cui, Jin
    Cao, Licai
    Zhang, Tianxiao
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART O-JOURNAL OF RISK AND RELIABILITY, 2024, 238 (02) : 333 - 348