Molecular transport through capillaries made with atomic-scale precision

被引:568
作者
Radha, B. [1 ]
Esfandiar, A. [1 ]
Wang, F. C. [2 ]
Rooney, A. P. [3 ]
Gopinadhan, K. [1 ]
Keerthi, A. [1 ]
Mishchenko, A. [1 ]
Janardanan, A. [1 ]
Blake, P. [4 ]
Fumagalli, L. [1 ,4 ]
Lozada-Hidalgo, M. [1 ]
Garaj, S. [5 ]
Haigh, S. J. [3 ]
Grigorieva, I. V. [1 ]
Wu, H. A. [2 ]
Geim, A. K. [1 ]
机构
[1] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England
[2] Chinese Acad Sci, Univ Sci & Technol China, Dept Modern Mech, Key Lab Mech Behav & Design Mat, Hefei 230027, Anhui, Peoples R China
[3] Univ Manchester, Sch Mat, Manchester M13 9PL, Lancs, England
[4] Univ Manchester, Natl Graphene Inst, Booth St East, Manchester M13 9PL, Lancs, England
[5] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
CARBON NANOTUBE MEMBRANES; DER-WAALS HETEROSTRUCTURES; FAST WATER TRANSPORT; POROUS GRAPHENE; MASS-TRANSPORT; GRAPHITE; DYNAMICS; FLOW; NANOFLUIDICS; INTERFACES;
D O I
10.1038/nature19363
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nanometre-scale pores and capillaries have long been studied because of their importance in many natural phenomena and their use in numerous applications(1). A more recent development is the ability to fabricate artificial capillaries with nanometre dimensions, which has enabled new research on molecular transport and led to the emergence of nanofluidics(2-4). But surface roughness in particular makes it challenging to produce capillaries with precisely controlled dimensions at this spatial scale. Here we report the fabrication of narrow and smooth capillaries through van der Waals assembly(5), with atomically flat sheets at the top and bottom separated by spacers made of two-dimensional crystals(6) with a precisely controlled number of layers. We use graphene and its multilayers as archetypal two-dimensional materials to demonstrate this technology, which produces structures that can be viewed as if individual atomic planes had been removed from a bulk crystal to leave behind flat voids of a height chosen with atomic-scale precision. Water transport through the channels, ranging in height from one to several dozen atomic planes, is characterized by unexpectedly fast flow (up to 1 metre per second) that we attribute to high capillary pressures (about 1,000 bar) and large slip lengths. For channels that accommodate only a few layers of water, the flow exhibits a marked enhancement that we associate with an increased structural order in nanoconfined water. Our work opens up an avenue to making capillaries and cavities with sizes tunable to angstrom precision, and with permeation properties further controlled through a wide choice of atomically flat materials available for channel walls.
引用
收藏
页码:222 / +
页数:16
相关论文
共 50 条
  • [21] Unveiling atomic-scale features of inherent heterogeneity in metallic glass by molecular dynamics simulations
    Hu, Y. C.
    Guan, P. F.
    Li, M. Z.
    Liu, C. T.
    Yang, Y.
    Bai, H. Y.
    Wang, W. H.
    PHYSICAL REVIEW B, 2016, 93 (21)
  • [22] Atomic-Scale Friction and Adhesion at Ambient Pressure
    Choi, Joong Il Jake
    Cho, Hunyoung
    Park, Jeong Young
    LANGMUIR, 2024, 40 (41) : 21317 - 21326
  • [23] Atomic-scale mechanisms of void strengthening in tungsten
    Osetsky, Yuri N.
    TUNGSTEN, 2021, 3 (01) : 65 - 71
  • [24] The interaction between atomic-scale pores and particles
    Hassani, Nasim
    Neek-Amal, Mehdi
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (03)
  • [25] Ballistic molecular transport through two-dimensional channels
    Keerthi, A.
    Geim, A. K.
    Janardanan, A.
    Rooney, A. P.
    Esfandiar, A.
    Hu, S.
    Dar, S. A.
    Grigorieva, I. V.
    Haigh, S. J.
    Wang, F. C.
    Radha, B.
    NATURE, 2018, 558 (7710) : 420 - +
  • [26] Atomic-scale modeling of twinning disconnections in zirconium
    MacKain, Olivier
    Cottura, Maeva
    Rodney, David
    Clouet, Emmanuel
    PHYSICAL REVIEW B, 2017, 95 (13)
  • [27] INVESTIGATION OF THE ATOMIC-SCALE FRICTION AND ENERGY-DISSIPATION IN DIAMOND USING MOLECULAR-DYNAMICS
    HARRISON, JA
    WHITE, CT
    COLTON, RJ
    BRENNER, DW
    THIN SOLID FILMS, 1995, 260 (02) : 205 - 211
  • [28] Atomic-Scale Insight into Tautomeric Recognition, Separation, and Interconversion of Guanine Molecular Networks on Au(111)
    Zhang, Chi
    Xie, Lei
    Wang, Likun
    Kong, Huihui
    Tan, Qinggang
    Xu, Wei
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (36) : 11795 - 11800
  • [29] Atomic-scale origins of slowness in the cyanobacterial circadian clock
    Abe, Jun
    Hiyama, Takuya B.
    Mukaiyama, Atsushi
    Son, Seyoung
    Mori, Toshifumi
    Saito, Shinji
    Osako, Masato
    Wolanin, Julie
    Yamashita, Eiki
    Kondo, Takao
    Akiyama, Shuji
    SCIENCE, 2015, 349 (6245) : 312 - 316
  • [30] Atomic-scale magnetism of cobalt-intercalated graphene
    Decker, Regis
    Brede, Jens
    Atodiresei, Nicolae
    Caciuc, Vasile
    Bluegel, Stefan
    Wiesendanger, Roland
    PHYSICAL REVIEW B, 2013, 87 (04)