Commissioning and beam characterization of the first gantry-mounted accelerator pencil beam scanning proton system

被引:40
|
作者
Kang, M. [1 ]
Cessac, Rob [2 ]
Pang, D. [1 ]
机构
[1] Georgetown Univ Hosp, Dept Radiat Med, Washington, DC 20007 USA
[2] Mevion Med Syst Inc, Littleton, MA USA
关键词
adaptive aperture; beam commissioning; compart PBS system; gantry-mounted accelerator; HYPERSCAN; pencil beam scanning; MONTE-CARLO; THERAPY; INTERPLAY; LUNG; DELIVERY; CANCER; MOTION; PATIENT; IMPACT; TUMOR;
D O I
10.1002/mp.13972
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To present and discuss beam characteristics and commissioning process of the first gantry-mounted accelerator single-room pencil beam scanning (PBS) proton system. Methods: The Mevion HYPERSCAN employs a design configuration with a synchrocyclotron mounted on the gantry to eliminate the traditional beamline and a nozzle that contains the dosimetry monitoring chambers, the energy modulator [energy selector (ES)], and an adaptive aperture (AA). To characterize the beam, we measured the integrated depth dose (IDD) for 12 energies. from the highest energy of 227 MeV down to 28 MeV with a range difference similar to 2 cm between the adjacent energies, using a large radius Bragg peak chamber; single spot profiles in air at five locations along the beam central axis using radiochromic EBT3 film and cross compared with a scintillation detector; and determined the output using a densely packed spot map. To access the performance of AA, we measured interleaf leakage and the penumbra reduction effect. Monte Carlo simulation using TOPAS was performed to study spot size variation along the beam path, beam divergence, and energy spectrum. Results: This proton system is calibrated to deliver 1 Gy dose at 5 cm depth in water using the highest beam energy by delivering 1 MU/spot to a 10 x 10 cm(2) map with a 2.5 mm spot spacing. The spot size in air at isocenter for a maximum range beam of 227 MeV is 4.1 mm. This system is able to reduce the beam range all the way to the patient surface; the lowest energy beam measured was 28 MeV which has a spot size of 15.7 mm. The beam divergence is 2.4 mrad at 227 MeV and 52.7 mrad for the superficial 28 MeV beam. The binary design of the ES has resulted in shifts of the effective SSD toward the isocenter as the energy is modulated lower. The pristine Bragg peaks have a constant 80%-80% width of 8.4 mm at all energies. The interleaf leakage of the AA is less than 1.5% at the highest energy. The AA reduces field penumbras. For a 10x10 optimized field, the 227 MeV beam penumbra measured at isocenter with a 5 cm air gap went from 6.8 to 4.7 mm and the 28 MeV beam penumbra went from 21.4 to 7.5 mm. Conclusions: The HYPERSCAN proton system has a unique design, which is reflected in the Bragg peak shapes, the variation of spot sizes with energy and the penumbra sharpening effect of the AA. The combination of the ES and AA makes PBS implementation possible without using a beam transport line and supplemental range shifter devices. In commissioning the TPS and designing plans these differences need to be considered. (C) 2020 American Association of Physicists in Medicine
引用
收藏
页码:3496 / 3510
页数:15
相关论文
共 50 条
  • [41] A study on repainting strategies for treating moderately moving targets with proton pencil beam scanning at the new Gantry 2 at PSI
    Zenklusen, S. M.
    Pedroni, E.
    Meer, D.
    PHYSICS IN MEDICINE AND BIOLOGY, 2010, 55 (17) : 5103 - 5121
  • [42] Investigating beam matching for multi-room pencil beam scanning proton therapy
    Suresh Rana
    Jaafar Bennouna
    Physical and Engineering Sciences in Medicine, 2020, 43 : 1241 - 1251
  • [43] Applications of a novel detector for pencil beam scanning proton therapy beam quality assurance
    Yang, Pei-Ying
    Hsieh, Yang-Wei
    Kang, Chen-Lin
    Tseng, Chin-Dar
    Lin, Chih-Hsueh
    Shieh, Chin-Shiuh
    Chao, Pei-Ju
    Lee, Tsair-Fwu
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2021, 35 (14N16):
  • [44] Investigating beam matching for multi-room pencil beam scanning proton therapy
    Rana, Suresh
    Bennouna, Jaafar
    PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE, 2020, 43 (04) : 1241 - 1251
  • [45] Intrafraction tumor motion monitoring and dose reconstruction for liver pencil beam scanning proton therapy
    Nankali, Saber
    Worm, Esben Schjodt
    Thomsen, Jakob Borup
    Stick, Line Bjerregaard
    Bertholet, Jenny
    Hoyer, Morten
    Weber, Britta
    Mortensen, Hanna Rahbek
    Poulsen, Per Rugaard
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [46] Validation and clinical implementation of an accurate Monte Carlo code for pencil beam scanning proton therapy
    Huang, Sheng
    Kang, Minglei
    Souris, Kevin
    Ainsley, Christopher
    Solberg, Timothy D.
    McDonough, James E.
    Simone, Charles B.
    Lin, Liyong
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2018, 19 (05): : 558 - 572
  • [47] Dosimetric delivery validation of dynamically collimated pencil beam scanning proton therapy
    Nelson, Nicholas P.
    Culberson, Wesley S.
    Hyer, Daniel E.
    Geoghegan, Theodore J.
    Patwardhan, Kaustubh A.
    Smith, Blake R.
    Flynn, Ryan T.
    Yu, Jen
    Gutierrez, Alonso N.
    Hill, Patrick M.
    PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (05)
  • [48] Measurement of stray neutron doses inside the treatment room from a proton pencil beam scanning system
    Mojzeszek, N.
    Farah, J.
    Klodowska, M.
    Ploc, O.
    Stolarczyk, L.
    Waligorski, M. P. R.
    Olko, P.
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2017, 34 : 80 - 84
  • [49] Design and characterization of an aperture system and spot configuration for ocular treatments with a gantry-based spot scanning proton beam
    Hickling, Susannah V.
    Corner, Stephen
    Kruse, Jon J.
    Deisher, Amanda J.
    MEDICAL PHYSICS, 2023, 50 (07) : 4521 - 4532
  • [50] Performance of a scintillation imaging system for relative dosimetry in pencil beam scanning proton therapy
    Liu, Qi
    Gong, Liangde
    Li, Xiufang
    Grossmann, Martin
    Wang, Jie
    Guo, Mengya
    Gu, Shuaizhe
    Lin, Ye
    Zhang, Manzhou
    Pu, Yuehu
    Chen, Zhiling
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2022, 1040