共 77 条
Attachment of positively and negatively charged submicron polystyrene plastics on nine typical soils
被引:46
作者:
Wang, Yu
[1
,2
]
Wang, Fang
[1
,2
]
Xiang, Leilei
[1
]
Bian, Yongrong
[1
,2
]
Wang, Ziquan
[1
]
Srivastava, Prashant
[3
]
Jiang, Xin
[1
,2
]
Xing, Baoshan
[1
,4
]
机构:
[1] Chinese Acad Sci, Inst Soil Sci, CAS Key Lab Soil Environm & Pollut Remediat, Nanjing 210008, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Commonwealth Sci & Ind Res Org CSIRO, Ind Environm Program, Land & Water Business Unit, Urrbrae, SA 5064, Australia
[4] Univ Massachusetts, Stockbridge Sch Agr, Amherst, MA 01003 USA
基金:
中国国家自然科学基金;
关键词:
Microplastics;
Soils;
Attachment;
DLVO theory;
Zeta potential;
Polystyrene;
ADSORPTION BEHAVIOR;
OXIDE NANOPARTICLES;
GRAPHENE OXIDE;
ORGANIC-MATTER;
IONIC-STRENGTH;
SORPTION;
MICROPLASTICS;
PARTICLES;
TRANSPORT;
KINETICS;
D O I:
10.1016/j.jhazmat.2022.128566
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
Microplastics (MPs) have attracted increasing concern as emerging contaminants of global importance in recent years. Soil is considered an important sink for MPs. Due to environmental weathering, MP surfaces are often charged, but there are limited studies on the interaction of differentially charged MP with soils. This study constructed Derjaguin-Landau-Verwey-Overbeek (DLVO) potential energy profiles, investigated the interac-tion mechanism of polystyrene MPs (0.2 mu m) with positive (MP+) and negative (MP-) charges on nine typical soils through quantitative analysis of fluorescence intensity. The attachment of MPs to different soils fitted the pseudo-second-order kinetic model well. The attachment isotherm data of MP+ fitted the linear model better, while the MP- data fitted the Langmuir model. The attachment capacity of MPs was significantly correlated with the zeta potential of soils. These results, as well as the fourier transform infrared spectroscopy (FTIR) spectra and scanning electronic microscopy (SEM) images of soils, indicated that electrostatic interactions and physical trapping were the dominant mechanisms for MP attachment to soils. These results showed a strong affinity for MPs attachment on soil and gave insights to predict the transport, fate and ecological effect of different charged MPs in soil.
引用
收藏
页数:11
相关论文