On well-posedness of the semilinear heat equation on the sphere

被引:1
|
作者
Punzo, Fabio [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat G Castelnuovo, I-00185 Rome, Italy
关键词
Semilinear parabolic equations; Semilinear elliptic equations; Laplace-Beltrami operator; Semigroup theory; Singular solutions; PARABOLIC EQUATIONS; ELLIPTIC PROBLEMS; RADIAL SOLUTIONS; NONEXISTENCE; UNIQUENESS; MANIFOLDS; EXISTENCE;
D O I
10.1007/s00028-012-0145-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are concerned with existence, uniqueness and nonuniqueness of nonnegative solutions to the semilinear heat equation in open subsets of the n-dimensional sphere. Existence and uniqueness results are obtained using L (p) -> L (q) estimates for the semigroup generated by the Laplace-Beltrami operator. Moreover, under proper assumptions on the nonlinear function, we establish nonuniqueness of weak solutions, when n a parts per thousand yen 3; to do this, we shall prove uniqueness of positive classical solutions and nonuniqueness of singular solutions of the corresponding semilinear elliptic problem.
引用
收藏
页码:571 / 592
页数:22
相关论文
共 50 条
  • [31] On well-posedness for the Benjamin–Ono equation
    Nicolas Burq
    Fabrice Planchon
    Mathematische Annalen, 2008, 340 : 497 - 542
  • [32] Sharp well-posedness for the Benjamin equation
    Chen, W.
    Guo, Z.
    Xiao, J.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) : 6209 - 6230
  • [33] On the Gevrey well-posedness of the Kirchhoff equation
    Tokio Matsuyama
    Michael Ruzhansky
    Journal d'Analyse Mathématique, 2019, 137 : 449 - 468
  • [34] Well-posedness for a perturbation of the KdV equation
    X. Carvajal
    L. Esquivel
    Nonlinear Differential Equations and Applications NoDEA, 2019, 26
  • [35] On the well-posedness of the hyperelastic rod equation
    Hasan Inci
    Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 795 - 802
  • [36] On the well-posedness of Galbrun's equation
    Hagg, Linus
    Berggren, Martin
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 150 : 112 - 133
  • [37] Well-Posedness of a Parabolic Equation with Involution
    Ashyralyev, Allaberen
    Sarsenbi, Abdizhahan
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2017, 38 (10) : 1295 - 1304
  • [38] LOCAL WELL-POSEDNESS FOR KAWAHARA EQUATION
    Kato, Takamori
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2011, 16 (3-4) : 257 - 287
  • [39] Well-posedness for a perturbation of the KdV equation
    Carvajal, X.
    Esquivel, L.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2019, 26 (06):
  • [40] On the well-posedness of the hyperelastic rod equation
    Inci, Hasan
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (03) : 795 - 802