Evolutes of curves in the Lorentz-Minkowski plane

被引:0
|
作者
Izumiya, S. [1 ]
Fuster, M. C. Romero [2 ]
Takahashi, M. [3 ]
机构
[1] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 0600810, Japan
[2] Univ Valencia, Dept Geometria & Topol, Valencia 46100, Spain
[3] Muroran Inst Technol, Muroran, Hokkaido 0508585, Japan
来源
SINGULARITIES IN GENERIC GEOMETRY | 2018年 / 78卷
关键词
evolute; inflection point; lightcone frame; Lagrangian singularity; Legendrian singularity;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We can use a moving frame, as in the case of regular plane curves in the Euclidean plane, in order to define the arc-length parameter and the Frenet formula for non-lightlike regular curves in the Lorentz-Minkowski plane. This leads naturally to a well defined evolute associated to non-lightlike regular curves without inflection points in the Lorentz-Minkowski plane. However, at a lightlike point the curve shifts between a spacelike and a timelike region and the evolute cannot be defined by using this moving frame. In this paper, we introduce an alternative frame, the lightcone frame, that will allow us to associate an evolute to regular curves without inflection points in the Lorentz-Minkowski plane. Moreover, under appropriate conditions, we shall also be able to obtain globally defined evolutes of regular curves with inflection points. We investigate here the geometric properties of the evolute at lightlike points and inflection points.
引用
收藏
页码:313 / 330
页数:18
相关论文
共 27 条
  • [1] Evolutes of the(n,m)-cusp mixed-type curves in the Lorentz-Minkowski plane
    Zhao, Xin
    Liu, Tongchang
    Pei, Donghe
    Zhang, Cuilian
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2021, 18 (01)
  • [2] Evolutes of fronts in the Minkowski plane
    Li, Yanlin
    Sun, Qing-You
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (16) : 5416 - 5426
  • [3] Evolutes of Hyperbolic Plane Curves
    Shyuichi IZUMIYA
    Takashi SANO
    Erika TORII
    Acta Mathematica Sinica(English Series), 2004, 20 (03) : 543 - 550
  • [4] Evolutes of hyperbolic plane curves
    Izumiya, S
    Pei, DH
    Sano, T
    Torii, E
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2004, 20 (03) : 543 - 550
  • [5] Evolutes of Hyperbolic Plane Curves
    Shyuichi Izumiya
    Dong He Pei
    Takashi Sano
    Erika Torii
    Acta Mathematica Sinica, 2004, 20 : 543 - 550
  • [6] EVOLUTES AND INVOLUTES OF FRONTALS IN THE EUCLIDEAN PLANE
    Fukunaga, Tomonori
    Takahashi, Masatomo
    DEMONSTRATIO MATHEMATICA, 2015, 48 (02) : 147 - 166
  • [7] EVOLUTES OF FRONTS IN THE EUCLIDEAN PLANE
    Fukunaga, T.
    Takahashi, M.
    JOURNAL OF SINGULARITIES, 2014, 10 : 92 - 107
  • [8] Curves in the Minkowski plane and their contact with pseudo-circles
    Amani Saloom
    Farid Tari
    Geometriae Dedicata, 2012, 159 : 109 - 124
  • [9] Curves in the Minkowski plane and their contact with pseudo-circles
    Saloom, Amani
    Tari, Farid
    GEOMETRIAE DEDICATA, 2012, 159 (01) : 109 - 124
  • [10] Evolutes of dual spherical curves for ruled surfaces
    Li, Yanlin
    Pei, Donghe
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (11) : 3005 - 3015