Spatial atomic layer deposition: A route towards further industrialization of atomic layer deposition

被引:261
|
作者
Poodt, Paul [1 ]
Cameron, David C. [2 ]
Dickey, Eric [3 ]
George, Steven M. [4 ,5 ]
Kuznetsov, Vladimir [6 ]
Parsons, Gregory N. [7 ]
Roozeboom, Fred [1 ,8 ]
Sundaram, Ganesh [9 ]
Vermeer, Ad [10 ]
机构
[1] TNO, NL-5600 HE Eindhoven, Netherlands
[2] Lappeenranta Univ Technol, Adv Surface Technol Res Lab ASTRaL, FI-50100 Mikkeli, Finland
[3] Lotus Appl Technol, Hillsboro, OR 97006 USA
[4] Univ Colorado, Dept Chem, Boulder, CO 80309 USA
[5] Univ Colorado, Dept Chem Engn, Boulder, CO 80309 USA
[6] Levitech BV, NL-1322 AP Almere, Netherlands
[7] N Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA
[8] Eindhoven Univ Technol, NL-5600 MB Eindhoven, Netherlands
[9] Cambridge NanoTech Inc, Cambridge, MA 02139 USA
[10] SoLayTec BV, NL-5652 AM Eindhoven, Netherlands
来源
关键词
TRANSISTORS; FIBERS;
D O I
10.1116/1.3670745
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Atomic layer deposition (ALD) is a technique capable of producing ultrathin conformal films with atomic level control over thickness. A major drawback of ALD is its low deposition rate, making ALD less attractive for applications that require high throughput processing. An approach to overcome this drawback is spatial ALD, i.e., an ALD mode where the half-reactions are separated spatially instead of through the use of purge steps. This allows for high deposition rate and high throughput ALD without compromising the typical ALD assets. This paper gives a perspective of past and current developments in spatial ALD. The technology is discussed and the main players are identified. Furthermore, this overview highlights current as well as new applications for spatial ALD, with a focus on photovoltaics and flexible electronics. (C) 2012 American Vacuum Society. [DOI: 10.1116/1.3670745]
引用
收藏
页数:11
相关论文
共 50 条
  • [31] ATOMIC LAYER EPITAXY DEPOSITION PROCESSES
    BEDAIR, SM
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1994, 12 (01): : 179 - 185
  • [32] Atomic layer deposition - a tool for nanotechnology
    Albert, Matthias
    Bartha, Johann Wolfgang
    VAKUUM IN FORSCHUNG UND PRAXIS, 2008, 20 (01) : 7 - 10
  • [33] Electroless atomic layer deposition of copper
    Venkatraman, Kailash
    Joi, Aniruddha
    Dordi, Yezdi
    Akolkar, Rohan
    ELECTROCHEMISTRY COMMUNICATIONS, 2018, 91 : 45 - 48
  • [34] Analytic expressions for atomic layer deposition: Coverage, throughput, and materials utilization in cross-flow, particle coating, and spatial atomic layer deposition
    Yanguas-Gil, Angel
    Elam, Jeffrey W.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2014, 32 (03):
  • [35] Catalyst Design with Atomic Layer Deposition
    O'Neill, Brandon J.
    Jackson, David H. K.
    Lee, Jechan
    Canlas, Christian
    Stair, Peter C.
    Marshall, Christopher L.
    Elam, Jeffrey W.
    Kuech, Thomas F.
    Dumesic, James A.
    Huber, George W.
    ACS CATALYSIS, 2015, 5 (03): : 1804 - 1825
  • [36] Catalyst synthesis by atomic layer deposition
    Stair, Peter
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [37] Challenges for selective atomic layer deposition
    Chabal, Yves
    Rahman, Rezwanur
    Klesko, Joseph
    Dangerfield, Aaron
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [38] Atomic layer deposition of CuCl nanoparticles
    Natarajan, G.
    Maydannik, P. S.
    Cameron, D. C.
    Akopyan, I.
    Novikov, B. V.
    APPLIED PHYSICS LETTERS, 2010, 97 (24)
  • [39] Monolayer thickness in atomic layer deposition
    Ylilammi, M
    THIN SOLID FILMS, 1996, 279 (1-2) : 124 - 130
  • [40] Application of atomic layer deposition in nanophotonics
    Karvonen, Lasse
    Saynatjoki, Antti
    Roussey, Matthieu
    Kuittinen, Markku
    Honkanen, Seppo
    INTEGRATED OPTICS: DEVICES, MATERIALS, AND TECHNOLOGIES XVIII, 2014, 8988