Spatial atomic layer deposition: A route towards further industrialization of atomic layer deposition

被引:261
|
作者
Poodt, Paul [1 ]
Cameron, David C. [2 ]
Dickey, Eric [3 ]
George, Steven M. [4 ,5 ]
Kuznetsov, Vladimir [6 ]
Parsons, Gregory N. [7 ]
Roozeboom, Fred [1 ,8 ]
Sundaram, Ganesh [9 ]
Vermeer, Ad [10 ]
机构
[1] TNO, NL-5600 HE Eindhoven, Netherlands
[2] Lappeenranta Univ Technol, Adv Surface Technol Res Lab ASTRaL, FI-50100 Mikkeli, Finland
[3] Lotus Appl Technol, Hillsboro, OR 97006 USA
[4] Univ Colorado, Dept Chem, Boulder, CO 80309 USA
[5] Univ Colorado, Dept Chem Engn, Boulder, CO 80309 USA
[6] Levitech BV, NL-1322 AP Almere, Netherlands
[7] N Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA
[8] Eindhoven Univ Technol, NL-5600 MB Eindhoven, Netherlands
[9] Cambridge NanoTech Inc, Cambridge, MA 02139 USA
[10] SoLayTec BV, NL-5652 AM Eindhoven, Netherlands
来源
关键词
TRANSISTORS; FIBERS;
D O I
10.1116/1.3670745
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Atomic layer deposition (ALD) is a technique capable of producing ultrathin conformal films with atomic level control over thickness. A major drawback of ALD is its low deposition rate, making ALD less attractive for applications that require high throughput processing. An approach to overcome this drawback is spatial ALD, i.e., an ALD mode where the half-reactions are separated spatially instead of through the use of purge steps. This allows for high deposition rate and high throughput ALD without compromising the typical ALD assets. This paper gives a perspective of past and current developments in spatial ALD. The technology is discussed and the main players are identified. Furthermore, this overview highlights current as well as new applications for spatial ALD, with a focus on photovoltaics and flexible electronics. (C) 2012 American Vacuum Society. [DOI: 10.1116/1.3670745]
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Atomic Layer Deposition of Superconductors
    Proslier, Th.
    Klug, J. A.
    Becker, N. C.
    Elam, J. W.
    Pellin, M. J.
    ATOMIC LAYER DEPOSITION APPLICATIONS 7, 2011, 41 (02): : 237 - 245
  • [22] Atomic layer deposition of atomic mirror for silicon
    Fujimoto, T.
    Shiomi, Y.
    Kumagai, H.
    Kobayashi, A.
    PHOTON PROCESSING IN MICROELECTRONICS AND PHOTONICS VI, 2007, 6458
  • [23] Nanotemplates with electrospray deposition and atomic layer deposition
    Head, Ashley R.
    Chaudhary, Shilpi
    Clark, Adam
    Johansson, Niclas
    Snezhkova, Olesia
    Schnadt, Joachim
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [24] Comparative Study of the Environmental Impact of Depositing Al2O3 by Atomic Layer Deposition and Spatial Atomic Layer Deposition
    Niazi, Muhammad Farooq Khan
    Munoz-Rojas, David
    Evrard, Damien
    Weber, Matthieu
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (41) : 15072 - 15082
  • [25] Influence of atomic layer deposition valve temperature on ZrN plasma enhanced atomic layer deposition growth
    Muneshwar, Triratna
    Cadien, Ken
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2015, 33 (06):
  • [26] Atmospheric Spatial Atomic Layer Deposition of In-Doped ZnO
    Illiberi, A.
    Scherpenborg, R.
    Roozeboom, F.
    Poodt, P.
    ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2014, 3 (05) : P111 - P114
  • [27] Spatial Atomic Layer Deposition of Zinc Oxide Thin Films
    Illiberi, A.
    Roozeboom, F.
    Poodt, P.
    ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (01) : 268 - 272
  • [28] Atomic Lego Catalysts Synthesized by Atomic Layer Deposition
    Lu, Junling
    ACCOUNTS OF MATERIALS RESEARCH, 2022, 3 (03): : 358 - 368
  • [29] Random deposition as a growth mode in atomic layer deposition
    Puurunen, RL
    CHEMICAL VAPOR DEPOSITION, 2004, 10 (03) : 159 - 170
  • [30] Atomic layer deposition for advanced nanomanufacturing
    CAO Kun
    LIU Xiao
    YANG Fan
    CHEN Rong
    Science China(Technological Sciences), 2022, (09) : 2218 - 2220