Monoclinic Wolframite ZnWO4/SiO2 nanocomposite as an anode material for lithium ion battery

被引:8
作者
Brijesh, K. [1 ]
Dhanush, P. C. [1 ]
Vinayraj, S. [1 ]
Nagaraja, H. S. [1 ]
机构
[1] Natl Inst Technol Karnataka, Dept Phys, PO Srinivasnagar, Surathkal 575025, Mangaluru, India
关键词
ZnWO4/SiO2; nanocomposite; Composite materials; Anode material; Electrochemical studies; Lithium ion battery; Energy storage and conversion; PERFORMANCE; COMPOSITE;
D O I
10.1016/j.matlet.2020.128108
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Herein, we report the preparation and characterization of the ZnWO4 and ZnWO4/SiO2 nanocomposite. The ZnWO4/SiO2 nanocomposite exhibits 570 mAh g(-1) discharge capacity and 314 mAh g(-1) charge capacity at 10 mA g(-1) for the primary cycle. The increasing amount of SiO2 in the ZnWO4/SiO2 nanocomposite increases the overall performance of the composite. The synergetic effect between the ZnWO4 and SiO2 enhances the rate capability, specific capacity, cycle stability and coloumbic efficiency of the composite. The good electrochemical performance of ZnWO4/SiO2 nanocomposite makes it a promising anode for Lithium ion battery. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:4
相关论文
共 11 条
[1]   Effect of overcharge on lithium-ion cells: Silicon/graphite anodes [J].
Bloom, Ira ;
Rago, Nancy Dietz ;
Sheng, Yangping ;
Li, Jianlin ;
Wood, David L., III ;
Steele, Leigh Anna ;
Lamb, Joshua ;
Spangler, Scott ;
Grosso, Christopher ;
Fenton, Kyle .
JOURNAL OF POWER SOURCES, 2019, 432 :73-81
[2]   ZnWO4/r-GO nanocomposite as high capacity anode for lithium-ion battery [J].
Brijesh, K. ;
Nagaraja, S. .
IONICS, 2020, 26 (06) :2813-2823
[3]   Lower Band Gap Sb/ZnWO4/r-GO Nanocomposite Based Supercapacitor Electrodes [J].
Brijesh, K. ;
Nagaraja, H. S. .
JOURNAL OF ELECTRONIC MATERIALS, 2019, 48 (07) :4188-4195
[4]   Chemically prepared Polypyrrole/ZnWO4 nanocomposite electrodes for electrocatalytic water splitting [J].
Brijesh, K. ;
Bindu, K. ;
Shanbhag, Dhanush ;
Nagaraja, H. S. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (02) :757-767
[5]   Stable Cycling of SiO2 Nanotubes as High-Performance Anodes for Lithium-Ion Batteries [J].
Favors, Zachary ;
Wang, Wei ;
Bay, Hamed Hosseini ;
George, Aaron ;
Ozkan, Mihrimah ;
Ozkan, Cengiz S. .
SCIENTIFIC REPORTS, 2014, 4
[6]   Electrochemical performance of α-Fe2O3 nanorods as anode material for lithium-ion cells [J].
Liu, Hao ;
Wang, Guoxiu ;
Park, Jinsoo ;
Wang, Jiazhao ;
Liu, Huakun ;
Zhang, Chao .
ELECTROCHIMICA ACTA, 2009, 54 (06) :1733-1736
[7]   Analysis of SiO anodes for lithium-ion batteries [J].
Miyachi, M ;
Yamamoto, H ;
Kawai, H ;
Ohta, T ;
Shirakata, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (10) :A2089-A2091
[8]   Hydrothermal Synthesis of ZnWO4 Hierarchical Hexangular Microstars for Enhanced Lithium-Storage Properties [J].
Shi, Nianxiang ;
Xiong, Shenglin ;
Wu, Fangfang ;
Bai, Jing ;
Chu, Yanting ;
Mao, Hongzhi ;
Feng, Jinkui ;
Xi, Baojuan .
EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2017, (03) :734-740
[9]   Synergistic Effect of SnO2/ZnWO4 Core-Shell Nanorods with High Reversible Lithium Storage Capacity [J].
Xing, Li-Li ;
Yuan, Shuang ;
He, Bin ;
Zhao, Ya-Yu ;
Wu, Xiao-Ling ;
Xue, Xin-Yu .
CHEMISTRY-AN ASIAN JOURNAL, 2013, 8 (07) :1530-1535
[10]   Electrochemical performance of ZnWO4/CNTs composite as anode materials for lithium-ion battery [J].
Zhang, Linsen ;
Wang, Zhitao ;
Wang, Lizhen ;
Xing, Yu ;
Li, Xiaofeng ;
Zhang, Yong .
APPLIED SURFACE SCIENCE, 2014, 305 :179-185