Quasiconformal Mappings with Sobolev Boundary Values

被引:0
|
作者
Astala, Kari [1 ]
Bonk, Mario [2 ]
Heinonen, Juha [2 ]
机构
[1] Univ Helsinki, Dept Math, FIN-00014 Helsinki, Finland
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
基金
芬兰科学院;
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider quasiconformal mappings in the upper half space R(+)(n+1) of R(n+1), n >= 2, whose almost everywhere defined trace in R(n) has distributional differential in L(n) (R(n)). We give both geometric and analytic characterizations for this possibility, resembling the situation in the classical Hardy space H(1). More generally, we consider certain positive functions defined on R(+)(n+1), called conformal densities. These densities mimic the averaged derivatives of quasiconformal mappings, and we prove analogous trace theorems for them. The abstract approach of general conformal densities sheds new light to the mapping case as well.
引用
收藏
页码:687 / 731
页数:45
相关论文
共 50 条