Distribution of debris thickness and its effect on ice melt at Hailuogou glacier, southeastern Tibetan Plateau, using in situ surveys and ASTER imagery

被引:125
作者
Zhang, Yong [1 ,2 ]
Fujita, Koji [2 ]
Liu, Shiyin [1 ]
Liu, Qiao [3 ]
Nuimura, Takayuki [2 ]
机构
[1] Chinese Acad Sci, State Key Lab Cryospher Sci, Cold & Arid Reg Environm & Engn Res Inst, Lanzhou 730000, Peoples R China
[2] Nagoya Univ, Grad Sch Environm Studies, Nagoya, Aichi 4648602, Japan
[3] Chinese Acad Sci, Key Lab Mt Environm Evolvement & Regulat, Inst Mt Hazards & Environm, Chengdu 610041, Peoples R China
基金
中国国家自然科学基金; 日本科学技术振兴机构;
关键词
SURFACE-ENERGY-BALANCE; MODEL; ABLATION; TEMPERATURE; SATELLITE; LAYER;
D O I
10.3189/002214311798843331
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Debris cover is widely present in glacier ablation areas of the Tibetan Plateau, and its spatial distribution greatly affects glacier melt rates. High-resolution in situ measurements of debris thickness on Hailuogou glacier, Mount Gongga, southeastern Tibetan Plateau, show pronounced inhomogeneous debris distribution. An analysis of transverse and longitudinal profiles indicates that the ground-surveyed debris thicknesses and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)-derived thermal resistances of debris layers correlate strongly over the entire ablation area. Across- and along-glacier patterns of ASTER-derived thermal resistance correspond well with spatial patterns of debris thickness, which may reflect large-scale variations in the extent and thickness of the debris cover. The ice melt rate variability over the ablation area simulated by a surface energy-balance model that considered thermal resistance of the debris layer indicates clearly the crucial role of debris and its spatial continuity in modifying the spatial characteristics of melt rates. Because of the inhomogeneous distribution of debris thickness, about 67% of the ablation area on Hailuogou glacier has undergone accelerated melting, whereas about 19% of the ablation area has experienced inhibited melting, and the sub-debris melt rate equals the bare-ice melt rate in only 14% of the ablation area.
引用
收藏
页码:1147 / 1157
页数:11
相关论文
共 47 条
[21]  
MATTSON LE, 1993, IAHS-AISH P, P289
[22]   Spatial distribution of debris thickness and melting from remote-sensing and meteorological data, at debris-covered Baltoro glacier, Karakoram, Pakistan [J].
Mihalcea, C. ;
Mayer, C. ;
Diolaiuti, G. ;
D'Agata, C. ;
Smiraglia, C. ;
Lambrecht, A. ;
Vuillermoz, E. ;
Tartari, G. .
ANNALS OF GLACIOLOGY, VOL 48, 2008, 48 :49-+
[23]   Using ASTER satellite and ground-based surface temperature measurements to derive supraglacial debris cover and thickness patterns on Miage Glacier (Mont Blanc Massif, Italy) [J].
Mihalcea, C. ;
Brock, B. W. ;
Diolaiuti, G. ;
D'Agata, C. ;
Citterio, M. ;
Kirkbride, M. P. ;
Cutler, M. E. J. ;
Smiraglia, C. .
COLD REGIONS SCIENCE AND TECHNOLOGY, 2008, 52 (03) :341-354
[24]  
Nakawo M, 1999, GEOGR ANN A, V81A, P695, DOI 10.1111/1468-0459.00097
[25]   ESTIMATE OF GLACIER ABLATION UNDER A DEBRIS LAYER FROM SURFACE-TEMPERATURE AND METEOROLOGICAL VARIABLES [J].
NAKAWO, M ;
YOUNG, GJ .
JOURNAL OF GLACIOLOGY, 1982, 28 (98) :29-34
[26]  
Nakawo M., 1981, Ann. Glaciol, V2, P85, DOI 10.3189/172756481794352432
[27]  
Nakawo M., 1986, Ann. Glaciol, V8, P129, DOI [DOI 10.3189/S0260305500001294, 10.3189/S0260305500001294]
[28]   Calculating ice melt beneath a debris layer using meteorological data [J].
Nicholson, Lindsey ;
Benn, Douglas I. .
JOURNAL OF GLACIOLOGY, 2006, 52 (178) :463-470
[29]   Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers [J].
Paul, F ;
Huggel, C ;
Kääb, A .
REMOTE SENSING OF ENVIRONMENT, 2004, 89 (04) :510-518
[30]   Optical remote sensing of glacier characteristics: A review with focus on the Himalaya [J].
Racoviteanu, Adina E. ;
Williams, Mark W. ;
Barry, Roger G. .
SENSORS, 2008, 8 (05) :3355-3383