Qualitative and quantitative comparison of two promising oxy-fuel power cycles for CO2 capture

被引:51
作者
Sanz, Wolfgang [1 ]
Jericha, Herbert [1 ]
Bauer, Bernhard [1 ]
Goettlich, Emil [1 ]
机构
[1] Graz Univ Technol, Inst Thermal Turbomachinery & Machine Dynam, A-8010 Graz, Austria
来源
JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME | 2008年 / 130卷 / 03期
关键词
D O I
10.1115/1.2800350
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Since the Kyoto conference, there is a broad consensus that the human emission of greenhouse gases, mainly CO2, has to be reduced. In the power generation sector there are three main alternatives that are currently studied worldwide. Among them oxy-fuel cycles with internal combustion with pure oxygen are a very promising technology. Within the European project ENCAP (enhanced CO2 capture) the benchmarking of a number of novel power cycles with CO2 capture was carried out. Within the category oxy-fuel cycles, the Graz Cycle and the semiclosed oxy-fuel combustion combined cycle (SCOC-CC) both achieved a net efficiency of nearly 50%. In a second step, a qualitative comparison of the critical components was performed according to their technical maturity. In contrast to the Graz Cycle, the study authors claimed that no major technical barriers would exist for the SCOC-CC. In this work, the ENCAP study is repeated for the SCOC-CC and for a modified Graz Cycle variant as presented at the ASME IGTI Conference 2006. Both oxy-fuel cycles are thermodynamically investigated based on common assumptions agreed upon with the industry in previous work. The calculations showed that the high-temperature turbine of the SCOC-CC plant needs a much higher cooling flow supply due to the less favorable properties of the working fluid. A layout of the main components of both cycles is further presented, which shows that both cycles rely on the new designs of the high-temperature turbine and the compressors. The SCOC-CC compressor needs more stages due to a lower rotational speed but has a more favorable operating temperature. In general, all turbomachines of both cycles show similar technical challenges and are regarded as feasible.
引用
收藏
页数:11
相关论文
共 28 条
[1]  
ANDERSON RE, 2006, DURABILITY RELIABILI
[2]  
[Anonymous], 35 KRAFTW K DRESD GE
[3]  
[Anonymous], 2013, ZUSTANDSGROSSEN WASS
[4]  
Franco F., 2006, P 8 INT C GREENH GAS
[5]  
GOTTLICH E, 2004, ASME TURBO EXPO 2004
[6]  
GOTTLICHER G, 1999, FORTSCHRITT BERICH 6, V421
[7]  
HENNECKE DK, 1997, FESTSCHR JUB 100 JAH
[8]  
HUSTAD CW, 2005, ASME TURBO EXPO 2005
[9]  
*IEA, 2004, PROSP CO2 CAPTURE ST
[10]  
JERICHA H, 2004, VDI TAG STAT GAST FO