Modeling treatment of ischemic heart disease with partially observable Markov decision processes.

被引:0
|
作者
Hauskrecht, M
Fraser, H
机构
[1] Brown Univ, Dept Comp Sci, Providence, RI 02912 USA
[2] Tufts New England Med Ctr, Boston, MA 02111 USA
[3] MIT, Comp Sci Lab, Cambridge, MA 02139 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Diagnosis of a disease and its treatment are not separate, one-shot activities. Instead they are very often dependent and interleaved over time, mostly due to uncertainty about the underlying disease, uncertainty associated with the response of a patient to the treatment and varying cost of different diagnostic (investigative) and treatment procedures. The framework of Partially observable Markov decision processes (POMDPs) developed and used in operations research, control theory and artificial intelligence communities is particularly suitable for modeling such a complex decision process. In the paper, we show how the POMDP framework could be used to model and solve the problem of the management of patients with ischemic heart disease, and point out modeling advantages of the framework over standard decision formalisms.
引用
收藏
页码:538 / 542
页数:5
相关论文
共 50 条
  • [21] Partially observable Markov decision processes with imprecise parameters
    Itoh, Hideaki
    Nakamura, Kiyohiko
    ARTIFICIAL INTELLIGENCE, 2007, 171 (8-9) : 453 - 490
  • [22] Nonapproximability results for partially observable Markov decision processes
    Lusena, Cristopher
    Goldsmith, Judy
    Mundhenk, Martin
    1600, Morgan Kaufmann Publishers (14):
  • [23] THE PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES FRAMEWORK IN MEDICAL DECISION MAKING
    Goulionis, John E.
    Stengos, Dimitrios I.
    ADVANCES AND APPLICATIONS IN STATISTICS, 2008, 9 (02) : 205 - 232
  • [24] PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES AND PERIODIC POLICIES WITH APPLICATIONS
    Goulionis, John
    Stengos, D.
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING, 2011, 10 (06) : 1175 - 1197
  • [25] An Argument for the Bayesian Control of Partially Observable Markov Decision Processes
    Vargo, Erik
    Cogill, Randy
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2014, 59 (10) : 2796 - 2800
  • [26] Partially observable Markov decision processes for spoken dialog systems
    Williams, Jason D.
    Young, Steve
    COMPUTER SPEECH AND LANGUAGE, 2007, 21 (02): : 393 - 422
  • [27] Learning deterministic policies in partially observable Markov decision processes
    Miyazaki, K
    Kobayashi, S
    INTELLIGENT AUTONOMOUS SYSTEMS: IAS-5, 1998, : 250 - 257
  • [28] Nonmyopic multiaspect sensing with partially observable Markov decision processes
    Ji, Shihao
    Parr, Ronald
    Carin, Lawrence
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2007, 55 (06) : 2720 - 2730
  • [29] A Fast Approximation Method for Partially Observable Markov Decision Processes
    Bingbing Liu
    Yu Kang
    Xiaofeng Jiang
    Jiahu Qin
    Journal of Systems Science and Complexity, 2018, 31 : 1423 - 1436
  • [30] Partially Observable Markov Decision Processes incorporating epistemic uncertainties
    Faddoul, R.
    Raphael, W.
    Soubra, A. -H.
    Chateauneuf, A.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2015, 241 (02) : 391 - 401