Challenges and Recent Progress in the Development of Si Anodes for Lithium-Ion Battery

被引:916
作者
Jin, Yan [1 ,2 ]
Zhu, Bin [1 ,2 ]
Lu, Zhenda [1 ,2 ]
Liu, Nian [3 ]
Zhu, Jia [1 ,2 ]
机构
[1] Nanjing Univ, Natl Lab Solid State Microstruct, Coll Engn & Appl Sci, Nanjing 210093, Jiangsu, Peoples R China
[2] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[3] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA
基金
中国国家自然科学基金;
关键词
areal capacity; cost; Coulombic efficiency; lithium-ion batteries; silicon anodes; SOLID-ELECTROLYTE INTERPHASE; CONDUCTIVE POLYMER BINDER; HIGH-CAPACITY ANODES; SILICON NEGATIVE ELECTRODES; HIGH-PERFORMANCE ANODES; LOW-GRADE SOURCES; HIGH-TAP-DENSITY; FLUOROETHYLENE CARBONATE; COULOMBIC-EFFICIENCY; IN-SITU;
D O I
10.1002/aenm.201700715
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Silicon, because of its high specific capacity, is intensively pursued as one of the most promising anode material for next-generation lithium-ion batteries. In the past decade, various nanostructures are successfully demonstrated to address major challenges for reversible Si anodes related to pulverization and solid-electrolyte interphase. However, the electrochemical performance is still limited by challenges that stem from the use of nanomaterials. In this progress report, the focus is on the challenges and recent progress in the development of Si anodes for lithium-ion battery, including initial Coulombic efficiency, areal capacity, and material cost, which call for more research effort and provide a bright prospect for the widespread applications of silicon anodes in the future lithium-ion batteries.
引用
收藏
页数:17
相关论文
共 103 条
[1]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter [J].
Ashuri, Maziar ;
He, Qianran ;
Shaw, Leon L. .
NANOSCALE, 2016, 8 (01) :74-103
[4]   Si electrodes for li-ion batteries - A new way to look at an old problem [J].
Beattie, S. D. ;
Larcher, D. ;
Morcrette, M. ;
Simon, B. ;
Tarascon, J. -M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (02) :A158-A163
[5]   The effect of fluoroethylene carbonate additive content on the formation of the solid-electrolyte interphase and capacity fade of Li-ion full-cell employing nano Si-graphene composite anodes [J].
Bordes, Arnaud ;
Eom, KwangSup ;
Fuller, Thomas F. .
JOURNAL OF POWER SOURCES, 2014, 257 :163-169
[6]   Silicon-Reduced Graphene Oxide Self-Standing Composites Suitable as Binder-Free Anodes for Lithium-Ion Batteries [J].
Botas, Cristina ;
Carriazo, Daniel ;
Zhang, Wei ;
Rojo, Teofilo ;
Singh, Gurpreet .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (42) :28800-28808
[7]   In Situ Study of Silicon Electrode Lithiation with X-ray Reflectivity [J].
Cao, Chuntian ;
Steinruck, Hans-Georg ;
Shyam, Badri ;
Stone, Kevin H. ;
Toney, Michael F. .
NANO LETTERS, 2016, 16 (12) :7394-7401
[8]   Roles of Oxygen and Interfacial Stabilization in Enhancing the Cycling Ability of Silicon Oxide Anodes for Rechargeable Lithium Batteries [J].
Cao Cuong Nguyen ;
Choi, Hyun ;
Song, Seung-Wan .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (06) :A906-A914
[9]   Understanding the Interfacial Processes at Silicon-Copper Electrodes in Ionic Liquid Battery Electrolyte [J].
Cao Cuong Nguyen ;
Woo, Sang-Wook ;
Song, Seung-Wan .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (28) :14764-14771
[10]   Ambient-Air Stable Lithiated Anode for Rechargeable Li-Ion Batteries with High Energy Density [J].
Cao, Zeyuan ;
Xu, Pengyu ;
Zhai, Haowei ;
Du, Sicen ;
Mandal, Jyotirmoy ;
Dontigny, Martin ;
Zaghib, Karim ;
Yang, Yuan .
NANO LETTERS, 2016, 16 (11) :7235-7240