Training the quantum approximate optimization algorithm without access to a quantum processing unit

被引:80
作者
Streif, Michael [1 ,2 ]
Leib, Martin [1 ]
机构
[1] Data Lab, Volkswagen Grp, Ungererstr 69, D-80805 Munich, Germany
[2] Univ Erlangen Nurnberg FAU, Inst Theoret Phys, Staudtstr 7, D-91058 Erlangen, Germany
关键词
quantum algorithms; quantum computing; QAOA; tensor networks;
D O I
10.1088/2058-9565/ab8c2b
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we eliminate the classical outer learning loop of the quantum approximate optimization algorithm (QAOA) and present a strategy to find good parameters for QAOA based on topological arguments of the problem graph and tensor network techniques. Starting from the observation of the concentration of control parameters of QAOA, we find a way to classically infer parameters which scales polynomially in the number of qubits and exponentially with the depth of the circuit. Using this strategy, the quantum processing unit (QPU) is only needed to sample from the final state of QAOA. This method paves the way for a variation-free version of QAOA and makes QAOA more practical for applications on NISQ devices. We investigate the performance of the proposed approach for the initial assumptions and its resilience with respect to situations where they are not fulfilled. Moreover, we investigate the applicability of our method beyond the scope of QAOA, in improving schedules for quantum annealing.
引用
收藏
页数:16
相关论文
共 44 条
[21]  
Farhi E, 2016, ARXIV160207674
[22]  
Farhi Edward, 2014, arXiv preprint arXiv:1411.4028
[23]   qTorch: The quantum tensor contraction handler [J].
Fried, E. Schuyler ;
Sawaya, Nicolas P. D. ;
Cao, Yudong ;
Kivlichan, Ian D. ;
Romero, Jhonathan ;
Aspuru-Guzik, Alan .
PLOS ONE, 2018, 13 (12)
[24]   Probing for quantum speedup in spin-glass problems with planted solutions [J].
Hen, Itay ;
Job, Joshua ;
Albash, Tameem ;
Ronnow, Troels F. ;
Troyer, Matthias ;
Lidar, Daniel A. .
PHYSICAL REVIEW A, 2015, 92 (04)
[25]   Demonstration of a Neutral Atom Controlled-NOT Quantum Gate [J].
Isenhower, L. ;
Urban, E. ;
Zhang, X. L. ;
Gill, A. T. ;
Henage, T. ;
Johnson, T. A. ;
Walker, T. G. ;
Saffman, M. .
PHYSICAL REVIEW LETTERS, 2010, 104 (01)
[26]   Near-optimal quantum circuit for Grover's unstructured search using a transverse field [J].
Jiang, Zhang ;
Rieffel, Eleanor G. ;
Wang, Zhihui .
PHYSICAL REVIEW A, 2017, 95 (06)
[27]   QuTiP 2: A Python']Python framework for the dynamics of open quantum systems [J].
Johansson, J. R. ;
Nation, P. D. ;
Nori, Franco .
COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (04) :1234-1240
[28]   Layered Architecture for Quantum Computing [J].
Jones, N. Cody ;
Van Meter, Rodney ;
Fowler, Austin G. ;
McMahon, Peter L. ;
Kim, Jungsang ;
Ladd, Thaddeus D. ;
Yamamoto, Yoshihisa .
PHYSICAL REVIEW X, 2012, 2 (03)
[29]  
King AD., 2014, arXiv
[30]  
Kingma DP, 2014, ADV NEUR IN, V27