A LIOUVILLE-TYPE THEOREM FOR COOPERATIVE PARABOLIC SYSTEMS

被引:7
|
作者
Anh Tuan Duong [1 ]
Quoc Hung Phan [2 ]
机构
[1] Hanoi Natl Univ Educ, Dept Math, 136 Xuan Thuy St, Hanoi, Vietnam
[2] Duy Tan Univ, Inst Res & Dev, Da Nang, Vietnam
关键词
Liouville-type theorem; parabolic system; singularity estimate; universal estimate; blow-up rate; POSITIVE SOLUTIONS; ELLIPTIC-SYSTEMS; EQUATIONS;
D O I
10.3934/dcds.2018035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove Liouville-type theorem for semilinear parabolic system of the form u(t) - Delta u = a(11)u(p) + a(12)u(r)v(s+1) , v(t) - Delta v = a(21)u(r+1)v(s) + a(22)v(p) where r, s > 0, p = r + s + 1. The real matrix A = (a(ij)) satisfies conditions a(12), a(21) >= 0 and a(11), a(22) > 0. This paper is a continuation of Phan-Souplet (Math. Ann., 366, 1561-1585, 2016) where the authors considered the special case s = r for the system of m components. Our tool for the proof of Liouville-type theorem is a refinement of Phan-Souplet, which is based on Gidas-Spruck (Commun. Pure Appl. Math. 34, 525-598 1981) and Bidaut-Veron (Equations aux derivees partielles et applications. Elsevier, Paris, pp 189-198, 1998).
引用
收藏
页码:823 / 833
页数:11
相关论文
共 50 条
  • [21] Liouville-type theorem for some nonlinear systems in a half-space
    Cao, Linfen
    Dai, Zhaohui
    Li, Wenyan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [22] A Liouville-type Theorem for Schrödinger Operators
    Yehuda Pinchover
    Communications in Mathematical Physics, 2007, 272 : 75 - 84
  • [23] Liouville-type theorem for the drifting Laplacian operator
    Guangyue Huang
    Congcong Zhang
    Jing Zhang
    Archiv der Mathematik, 2011, 96 : 379 - 385
  • [24] Remarks on a Liouville-Type Theorem for Beltrami Flows
    Chae, Dongho
    Constantin, Peter
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (20) : 10012 - 10016
  • [25] A Liouville-type theorem in conformally invariant equations
    Li, Mingxiang
    MATHEMATISCHE ANNALEN, 2024, 389 (03) : 2499 - 2517
  • [26] A Liouville-type theorem for the stationary MHD equations
    Cho, Youseung
    Neustupa, Jiri
    Yang, Minsuk
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 73
  • [27] A Liouville-type theorem on halfspaces for the Kohn Laplacian
    Uguzzoni, F
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (01) : 117 - 123
  • [28] Liouville-type theorem for the drifting Laplacian operator
    Huang, Guangyue
    Zhang, Congcong
    Zhang, Jing
    ARCHIV DER MATHEMATIK, 2011, 96 (04) : 379 - 385
  • [29] A LIOUVILLE-TYPE THEOREM FOR SOME WEINGARTEN HYPERSURFACES
    Sakaguchi, Shigeru
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2011, 4 (04): : 887 - 895