Skeleton-Based Dynamic Hand Gesture Recognition Using a Part-Based GRU-RNN for Gesture-Based Interface

被引:32
作者
Shin, Seunghyeok [1 ]
Kim, Whoi-Yul [1 ]
机构
[1] Hanyang Univ, Dept Elect & Comp Engn, Seoul 04763, South Korea
关键词
Feature extraction; Gesture recognition; Joints; Neural networks; Hidden Markov models; Sensors; Artificial neural networks; gesture recognition; multi-layer neural network; recurrent neural networks; SEGMENTATION;
D O I
10.1109/ACCESS.2020.2980128
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recent improvements in imaging sensors and computing units have led to the development of a range of image-based human-machine interfaces (HMIs). An important approach in this direction is the use of dynamic hand gestures for a gesture-based interface, and some methods have been developed to provide real-time hand skeleton generation from depth images for dynamic hand gesture recognition. Towards this end, we propose a skeleton-based dynamic hand gesture recognition method that divides geometric features into multiple parts and uses a gated recurrent unit-recurrent neural network (GRU-RNN) for each feature part. Because each divided feature part has fewer dimensions than an entire feature, the number of hidden units required for optimization is reduced. As a result, we achieved similar recognition performance as the latest methods with fewer parameters.
引用
收藏
页码:50236 / 50243
页数:8
相关论文
共 50 条
  • [31] Behavioral Biometrics Authentication Using Gesture-Based
    Alariki, Ala Abdulhakim
    Manaf, Azizah Abdul
    ADVANCED SCIENCE LETTERS, 2014, 20 (02) : 492 - 495
  • [32] LDCRFs-Based Hand Gesture Recognition
    Elmezain, Mahmoud
    Al-Hamadi, Ayoub
    PROCEEDINGS 2012 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2012, : 2670 - 2675
  • [33] Dynamic Hand Gesture Recognition Based on Micro-Doppler Radar Signatures Using Hidden Gauss-Markov Models
    Wang, Zetao
    Li, Gang
    Yang, Le
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (02) : 291 - 295
  • [34] Hand gesture recognition based on fingertip detection
    Meng, Guoqing
    Wang, Mei
    2013 FOURTH GLOBAL CONGRESS ON INTELLIGENT SYSTEMS (GCIS), 2013, : 107 - 111
  • [35] Hand gesture recognition based on depth map
    Sykora, P.
    Kamencay, P.
    Zachariasova, M.
    Hudec, R.
    2014 ELEKTRO, 2014, : 109 - 112
  • [36] Hand Gesture Recognition Using Deep Feature Fusion Network Based on Wearable Sensors
    Yuan, Guan
    Liu, Xiao
    Yan, Qiuyan
    Qiao, Shaojie
    Wang, Zhixiao
    Yuan, Li
    IEEE SENSORS JOURNAL, 2021, 21 (01) : 539 - 547
  • [37] Hand Gesture Recognition using sEMG Signals Based on CNN
    Li Bo
    Yang Banghua
    Gao Shouwei
    Yan, LinFeng
    Zhuang, Haodong
    Wang, Wen
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 7180 - 7184
  • [38] Presentation Interface Based on Gesture and Voice Recognition
    Kim, Jinuk
    Kim, Sehoon
    Hong, Kwangjin
    Jean, David
    Jung, Keechul
    MULTIMEDIA AND UBIQUITOUS ENGINEERING, 2014, 308 : 75 - 81
  • [39] Hand gesture recognition based on dynamic Bayesian network framework
    Suk, Heung-Il
    Sin, Bong-Kee
    Lee, Seong-Whan
    PATTERN RECOGNITION, 2010, 43 (09) : 3059 - 3072
  • [40] Hand-Guiding Gesture-Based Telemanipulation with the Gesture Mode Classification and State Estimation Using Wearable IMU Sensors
    Choi, Haegyeom
    Jeon, Haneul
    Noh, Donghyeon
    Kim, Taeho
    Lee, Donghun
    MATHEMATICS, 2023, 11 (16)