SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 IN A COMPLEX SPACE FORM IN TERMS OF THE STRUCTURE JACOBI OPERATOR

被引:0
作者
Ki, U-Hang [1 ]
Kurihara, Hiroyuki [2 ]
机构
[1] Natl Acad Sci, Seoul 06579, South Korea
[2] Ibaraki Univ, Coll Educ, Mito, Ibaraki 3108512, Japan
来源
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY | 2022年 / 37卷 / 01期
关键词
Semi-invariant submanifold; almost contact metric structure; the third fundamental form; distingushed normal vector; structure Jacobi operator; Hopf real hypersurface; REAL HYPERSURFACES; PROJECTIVE-SPACE;
D O I
10.4134/CKMS.c210004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a semi-invariant submanifold of codimension 3 with almost contact metric structure (phi, xi, eta, g) in a complex space form M-n+1(c), c not equal 6 0. We denote by A and R-xi the shape operator in the direction of distinguished normal vector field and the structure Jacobi operator with respect to the structure vector xi, respectively. Suppose that the third fundamental form t satisfies dt(X, Y) = 2 theta g(phi X, Y) for a scalar theta(< 2c) and any vector fields X and Y on M. In this paper, we prove that if it satisfies R(xi)A = AR(xi) and at the same time del R-xi(xi) = 0 on M, then M is a Hopf hypersurface of type (A) provided that the scalar curvature s of M holds s - 2(n - 1)c <= 0.
引用
收藏
页码:229 / 257
页数:29
相关论文
共 25 条