In silico model for miRNA-mediated regulatory network in cancer

被引:6
作者
Ahmed, Khandakar Tanvir [1 ]
Sun, Jiao [1 ]
Chen, William [1 ]
Martinez, Irene [2 ]
Cheng, Sze [3 ]
Zhang, Wencai [4 ]
Yong, Jeongsik [3 ]
Zhang, Wei [1 ]
机构
[1] Univ Cent Florida, Comp Sci, Orlando, FL USA
[2] Heidelberg Univ, Mol Biotechnol, Heidelberg, Germany
[3] Univ Minnesota, Biochem Mol Biol & Biophys, Minneapolis, MN 55455 USA
[4] Univ Cent Florida, Med, Orlando, FL USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
miRNA regulation; protein expression prediction; graph-based learning model; 3'-UTR APA; HUMAN BREAST-CANCER; OVARIAN-CANCER; DOWN-REGULATION; ALTERNATIVE POLYADENYLATION; PROGNOSTIC MARKER; UP-REGULATION; RNA-SEQ; MICRORNA; EXPRESSION; CELLS;
D O I
10.1093/bib/bbab264
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Deregulation of gene expression is associated with the pathogenesis of numerous human diseases including cancer. Current data analyses on gene expression are mostly focused on differential gene/transcript expression in big data-driven studies. However, a poor connection to the proteome changes is a widespread problem in current data analyses. This is partly due to the complexity of gene regulatory pathways at the post-transcriptional level. In this study, we overcome these limitations and introduce a graph-based learning model, PTNet, which simulates the microRNAs (miRNAs) that regulate gene expression post-transcriptionally in silico. Our model does not require large-scale proteomics studies to measure the protein expression and can successfully predict the protein levels by considering the miRNA-mRNA interaction network, the mRNA expression, and the miRNA expression. Large-scale experiments on simulations and real cancer high-throughput datasets using PTNet validated that (i) the miRNA-mediated interaction network affects the abundance of corresponding proteins and (ii) the predicted protein expression has a higher correlation with the proteomics data (ground-truth) than the mRNA expression data. The classification performance also shows that the predicted protein expression has an improved prediction power on cancer outcomes compared to the prediction done by the mRNA expression data only or considering both mRNA and miRNA. Availability: PTNet toolbox is available at http://github.com/CompbioLabUCF/PTNet
引用
收藏
页数:13
相关论文
共 94 条
  • [1] Predicting effective microRNA target sites in mammalian mRNAs
    Agarwal, Vikram
    Bell, George W.
    Nam, Jin-Wu
    Bartel, David P.
    [J]. ELIFE, 2015, 4
  • [2] Network-based drug sensitivity prediction
    Ahmed, Khandakar Tanvir
    Park, Sunho
    Jiang, Qibing
    Yeu, Yunku
    Hwang, TaeHyun
    Zhang, Wei
    [J]. BMC MEDICAL GENOMICS, 2020, 13 (Suppl 11)
  • [3] MicroRNA-376b promotes breast cancer metastasis by targeting Hoxd10 directly
    An, Ning
    Luo, Xinmei
    Zhang, Ming
    Yu, Ruilian
    [J]. EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2017, 13 (01) : 79 - 84
  • [4] miR-506 Regulates Epithelial Mesenchymal Transition in Breast Cancer Cell Lines
    Arora, Himanshu
    Qureshi, Rehana
    Park, Woong-Yang
    [J]. PLOS ONE, 2013, 8 (05):
  • [5] Integrated genomic analyses of ovarian carcinoma
    Bell, D.
    Berchuck, A.
    Birrer, M.
    Chien, J.
    Cramer, D. W.
    Dao, F.
    Dhir, R.
    DiSaia, P.
    Gabra, H.
    Glenn, P.
    Godwin, A. K.
    Gross, J.
    Hartmann, L.
    Huang, M.
    Huntsman, D. G.
    Iacocca, M.
    Imielinski, M.
    Kalloger, S.
    Karlan, B. Y.
    Levine, D. A.
    Mills, G. B.
    Morrison, C.
    Mutch, D.
    Olvera, N.
    Orsulic, S.
    Park, K.
    Petrelli, N.
    Rabeno, B.
    Rader, J. S.
    Sikic, B. I.
    Smith-McCune, K.
    Sood, A. K.
    Bowtell, D.
    Penny, R.
    Testa, J. R.
    Chang, K.
    Dinh, H. H.
    Drummond, J. A.
    Fowler, G.
    Gunaratne, P.
    Hawes, A. C.
    Kovar, C. L.
    Lewis, L. R.
    Morgan, M. B.
    Newsham, I. F.
    Santibanez, J.
    Reid, J. G.
    Trevino, L. R.
    Wu, Y. -Q.
    Wang, M.
    [J]. NATURE, 2011, 474 (7353) : 609 - 615
  • [6] The inhibition of miR-21 promotes apoptosis and chemosensitivity in ovarian cancer
    Chan, John K.
    Blansit, Kevin
    Kiet, Tuyen
    Sherman, Alexander
    Wong, Gabriel
    Earle, Christine
    Bourguignon, Lilly Y. W.
    [J]. GYNECOLOGIC ONCOLOGY, 2014, 132 (03) : 739 - 744
  • [7] An integrative model for alternative polyadenylation, IntMAP, delineates mTOR-modulated endoplasmic reticulum stress response
    Chang, Jae-Woong
    Zhang, Wei
    Yeh, Hsin-Sung
    Park, Meeyeon
    Yao, Chengguo
    Shi, Yongsheng
    Kuang, Rui
    Yong, Jeongsik
    [J]. NUCLEIC ACIDS RESEARCH, 2018, 46 (12) : 5996 - 6008
  • [8] mRNA 3′-UTR shortening is a molecular signature of mTORC1 activation
    Chang, Jae-Woong
    Zhang, Wei
    Yeh, Hsin-Sung
    de Jong, Ebbing P.
    Jun, Semo
    Kim, Kwan-Hyun
    Bae, Sun S.
    Beckman, Kenneth
    Hwang, Tae Hyun
    Kim, Kye-Seong
    Kim, Do-Hyung
    Griffin, Timothy J.
    Kuang, Rui
    Yong, Jeongsik
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [9] miR-127 Regulates Cell Proliferation and Senescence by Targeting BCL6
    Chen, Jingwen
    Wang, Miao
    Guo, Mingzhou
    Xie, Yuntao
    Cong, Yu-Sheng
    [J]. PLOS ONE, 2013, 8 (11):
  • [10] P53-induced miR-1249 inhibits tumor growth, metastasis, and angiogenesis by targeting VEGFA and HMGA2
    Chen, Xiaoxiang
    Zeng, Kaixuan
    Xu, Mu
    Liu, Xiangxiang
    Hu, Xiuxiu
    Xu, Tao
    He, Bangshun
    Pan, Yuqin
    Sun, Huiling
    Wang, Shukui
    [J]. CELL DEATH & DISEASE, 2019, 10 (2)