On convergence of tracking differentiator

被引:263
作者
Guo, Bao-Zhu [1 ,2 ,3 ,4 ]
Zhao, Zhi-Liang [1 ]
机构
[1] Univ Sci & Technol China, Dept Math, Hefei 230026, Anhui, Peoples R China
[2] Acad Sinica, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[3] Univ Witwatersrand, Sch Computat & Appl Math, ZA-2050 Johannesburg, Johannesburg, South Africa
[4] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Peoples R China
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
tracking differentiator; stability; FREQUENCY;
D O I
10.1080/00207179.2011.569954
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The tracking differentiator was first proposed by Han in 1989 and the proof of convergence was presented the first time in Han and Wang (Han, J.Q., and Wang, W. (1994), 'Nonlinear Tracking-differentiator', Journal of Systems Science and Mathematical Science, 14, 177-183 (in Chinese)). Unfortunately, the proof there is incomplete. This problem has been open for over two decades. In this article, we give a rigorous proof under some additional conditions. An application for online estimation of the unknown frequencies for the finite sum of the sinusoidal signals is presented. The numerical simulations illustrate the effectiveness of the estimation for both linear and nonlinear tracking differentiators.
引用
收藏
页码:693 / 701
页数:9
相关论文
共 19 条
[1]   Discrete-time implementation of high-gain observers for numerical differentiation [J].
Dabroom, AM ;
Khalil, HK .
INTERNATIONAL JOURNAL OF CONTROL, 1999, 72 (17) :1523-1537
[2]   Second-order sliding-mode observer for mechanical systems [J].
Davila, J ;
Fridman, L ;
Levant, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (11) :1785-1789
[3]   Research on estimating smoothed value and differential value by using sliding mode system [J].
Emaru, T ;
Tsuchiya, T .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 2003, 19 (03) :391-402
[4]   Linear tracking-differentiator and application to online estimation of the frequency of a sinusoidal signal with random noise perturbation [J].
Guo, BZ ;
Han, JQ ;
Xi, FB .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2002, 33 (05) :351-358
[5]  
Han J., 1989, SYSTEMS SCI MATH SCI, V9, P328
[6]   From PID to Active Disturbance Rejection Control [J].
Han, Jingqing .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2009, 56 (03) :900-906
[7]  
Han JQ., 1994, J SYSTEMS SCI MATH, P177
[8]   A globally convergent frequency estimator [J].
Hsu, L ;
Ortega, R ;
Damm, G .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (04) :698-713
[9]   Linear time-derivative trackers [J].
Ibrir, S .
AUTOMATICA, 2004, 40 (03) :397-405
[10]  
Khalil H., 2002, Control of Nonlinear Systems