Rule Learning Through Active Inductive Inference

被引:0
|
作者
Erdmann, Tore [1 ]
Mathys, Christoph [2 ,3 ,4 ]
机构
[1] SISSA, Via Bonomea 265, I-34356 Trieste, Italy
[2] Aarhus Univ, Interacting Minds Ctr, Jens Chr Skous Vej 4, DK-8000 Aarhus, Denmark
[3] Univ Zurich, Inst Biomed Engn, Translat Neuromodeling Unit TNU, Wilfriedstr 6, CH-8032 Zurich, Switzerland
[4] Swiss Fed Inst Technol, Wilfriedstr 6, CH-8032 Zurich, Switzerland
来源
MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2021, PT I | 2021年 / 1524卷
关键词
Active inference; Rule induction; Context free grammars; Structure learning; Sampling-based inference; Reasoning; THOUGHT;
D O I
10.1007/978-3-030-93736-2_51
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a grammar-based approach to active inference based on hypothesis-driven rule learning where new hypotheses are generated on the fly. This contrasts with traditional approaches based on fixed hypothesis spaces and Bayesian model reduction. We apply these two contrasting approaches to an established active inference task and show that grammar-based agents' performance benefits from the explicit rule representation underpinning hypothesis generation. Our proposal is a synthesis of the active inference framework with language-of-thought models, which paves the way for computational-level descriptions of false inference based on an aberrant hypothesis-generating process.
引用
收藏
页码:715 / 725
页数:11
相关论文
共 50 条
  • [1] Active inference and learning
    Friston, Karl
    FitzGerald, Thomas
    Rigoli, Francesco
    Schwartenbeck, Philipp
    O'Doherty, John
    Pezzulo, Giovanni
    NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2016, 68 : 862 - 879
  • [2] Active inductive inference in children and adults: A constructivist perspective
    Bramley, Neil R.
    Xu, Fei
    COGNITION, 2023, 238
  • [3] Active inference through whiskers
    Mannella, Francesco
    Maggiore, Federico
    Baltieri, Manuel
    Pezzulo, Giovanni
    NEURAL NETWORKS, 2021, 144 : 428 - 437
  • [4] A rule merging technique for handling noise in inductive learning
    Pham, DT
    Bigot, S
    Dimov, SS
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2004, 218 (10) : 1255 - 1268
  • [5] An Active Inference Approach to Modeling Structure Learning: Concept Learning as an Example Case
    Smith, Ryan
    Schwartenbeck, Philipp
    Parr, Thomas
    Friston, Karl J.
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2020, 14
  • [6] Learning and Embodied Decisions in Active Inference
    Priorelli, Matteo
    Stoianov, Ivilin Peev
    Pezzulo, Giovanni
    ACTIVE INFERENCE, IWAI 2024, 2025, 2193 : 72 - 87
  • [7] Dopamine, reward learning, and active inference
    FitzGerald, Thomas H. B.
    Dolan, Raymond J.
    Friston, Kari
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2015, 9 : 1 - 16
  • [8] Exploring and Learning Structure: Active Inference Approach in Navigational Agents
    de Tinguy, Daria
    Verbelen, Tim
    Dhoedt, Bart
    ACTIVE INFERENCE, IWAI 2024, 2025, 2193 : 105 - 118
  • [9] Equilibrium in the Computing Continuum through Active Inference
    Sedlak, Boris
    Pujol, Victor Casamayor
    Donta, Praveen Kumar
    Dustdar, Schahram
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 160 : 92 - 108
  • [10] A Model of Agential Learning Using Active Inference
    Pitliya, Riddhi J.
    Murphy, Robin A.
    ACTIVE INFERENCE, IWAI 2023, 2024, 1915 : 106 - 120