Local Model Privacy-Preserving Study for Federated Learning

被引:0
作者
Pan, Kaiyun [1 ]
He, Daojing [1 ]
Xu, Chuan [2 ]
机构
[1] East China Normal Univ, Software Engn Inst, Shanghai, Peoples R China
[2] Inria Sophia Antipolis, Valbonne, France
来源
SECURITY AND PRIVACY IN COMMUNICATION NETWORKS, SECURECOMM 2021, PT I | 2021年 / 398卷
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Federated learning; Privacy-preserving; Distributed optimization; Differential privacy; OPTIMIZATION; COORDINATION;
D O I
10.1007/978-3-030-90019-9_15
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In federated learning framework, data are kept locally by clients, which provides naturally a certain level of privacy. However, we show in this paper that a curious onlooker can still infer some sensitive information of clients by looking at the exchanged messages. More precisely, for the linear regression task, the onlooker can decode the exact local model of each client in a constant number of rounds under both cross-device and cross-silo federated learning settings. We improve one of the learning algorithms and experimentally show that it makes the onlooker harder to decode the local model of clients.
引用
收藏
页码:287 / 307
页数:21
相关论文
共 50 条
  • [41] A Framework for Privacy-Preserving in IoV Using Federated Learning With Differential Privacy
    Adnan, Muhammad
    Syed, Madiha Haider
    Anjum, Adeel
    Rehman, Semeen
    IEEE ACCESS, 2025, 13 : 13507 - 13521
  • [42] A Privacy-Preserving Federated Learning for Multiparty Data Sharing in Social IoTs
    Yin, Lihua
    Feng, Jiyuan
    Xun, Hao
    Sun, Zhe
    Cheng, Xiaochun
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2021, 8 (03): : 2706 - 2718
  • [43] Privacy-Preserving and Efficient Model Aggregation in Edge-Assisted Federated Learning
    Wang, Shuyang
    Xie, Hongcheng
    Guo, Yu
    Guo, Fangda
    Jing, Fangming
    Bie, Rongfang
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, PT I, DASFAA 2024, 2024, 14850 : 511 - 521
  • [44] TPFL: Privacy-preserving personalized federated learning mitigates model poisoning attacks
    Zuo, Shaojun
    Xie, Yong
    Yao, Hehua
    Ke, Zhijie
    INFORMATION SCIENCES, 2025, 702
  • [45] Privacy-Preserving and Reliable Decentralized Federated Learning
    Gao, Yuanyuan
    Zhang, Lei
    Wang, Lulu
    Choo, Kim-Kwang Raymond
    Zhang, Rui
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2023, 16 (04) : 2879 - 2891
  • [46] AddShare: A Privacy-Preserving Approach for Federated Learning
    Asare, Bernard Atiemo
    Branco, Paula
    Kiringa, Iluju
    Yeap, Tet
    COMPUTER SECURITY. ESORICS 2023 INTERNATIONAL WORKSHOPS, PT I, 2024, 14398 : 299 - 309
  • [47] A Personalized Privacy-Preserving Scheme for Federated Learning
    Li, Zhenyu
    2022 IEEE INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, BIG DATA AND ALGORITHMS (EEBDA), 2022, : 1352 - 1356
  • [48] Privacy-Preserving Decentralized Aggregation for Federated Learning
    Jeon, Beomyeol
    Ferdous, S. M.
    Rahmant, Muntasir Raihan
    Walid, Anwar
    IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (IEEE INFOCOM WKSHPS 2021), 2021,
  • [49] Federated Learning for Privacy-Preserving Speaker Recognition
    Woubie, Abraham
    Backstrom, Tom
    IEEE ACCESS, 2021, 9 : 149477 - 149485
  • [50] Improved Privacy-Preserving Aggregation for Federated Learning
    Li, Yu
    Han, Yiliang
    Zhou, Tanping
    Xie, Huiyu
    Wu, Xuguang
    Song, Chaoyue
    2024 9TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS, ICCCS 2024, 2024, : 272 - 276