Local Model Privacy-Preserving Study for Federated Learning

被引:0
作者
Pan, Kaiyun [1 ]
He, Daojing [1 ]
Xu, Chuan [2 ]
机构
[1] East China Normal Univ, Software Engn Inst, Shanghai, Peoples R China
[2] Inria Sophia Antipolis, Valbonne, France
来源
SECURITY AND PRIVACY IN COMMUNICATION NETWORKS, SECURECOMM 2021, PT I | 2021年 / 398卷
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Federated learning; Privacy-preserving; Distributed optimization; Differential privacy; OPTIMIZATION; COORDINATION;
D O I
10.1007/978-3-030-90019-9_15
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In federated learning framework, data are kept locally by clients, which provides naturally a certain level of privacy. However, we show in this paper that a curious onlooker can still infer some sensitive information of clients by looking at the exchanged messages. More precisely, for the linear regression task, the onlooker can decode the exact local model of each client in a constant number of rounds under both cross-device and cross-silo federated learning settings. We improve one of the learning algorithms and experimentally show that it makes the onlooker harder to decode the local model of clients.
引用
收藏
页码:287 / 307
页数:21
相关论文
共 50 条
  • [21] Privacy-Preserving Robust Federated Learning with Distributed Differential Privacy
    Wang, Fayao
    He, Yuanyuan
    Guo, Yunchuan
    Li, Peizhi
    Wei, Xinyu
    2022 IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, 2022, : 598 - 605
  • [22] Study of Contribution Verifiability for Privacy-preserving Federated Learning
    Hsu, Ruei-Hau
    Kao, Shang-Wei
    Huang, Ting-Yun
    2021 INTERNATIONAL CONFERENCE ON SECURITY AND INFORMATION TECHNOLOGIES WITH AI, INTERNET COMPUTING AND BIG-DATA APPLICATIONS, 2023, 314 : 257 - 266
  • [23] ShieldFL: Mitigating Model Poisoning Attacks in Privacy-Preserving Federated Learning
    Ma, Zhuoran
    Ma, Jianfeng
    Miao, Yinbin
    Li, Yingjiu
    Deng, Robert H.
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2022, 17 : 1639 - 1654
  • [24] FedCCW: a privacy-preserving Byzantine-robust federated learning with local differential privacy for healthcare
    Lianfu Zhang
    Guangwei Fang
    Zuowen Tan
    Cluster Computing, 2025, 28 (3)
  • [25] Visual Object Detection for Privacy-Preserving Federated Learning
    Zhang, Jing
    Zhou, Jiting
    Guo, Jinyang
    Sun, Xiaohan
    IEEE ACCESS, 2023, 11 : 33324 - 33335
  • [26] Towards Efficient and Privacy-preserving Federated Deep Learning
    Hao, Meng
    Li, Hongwei
    Xu, Guowen
    Liu, Sen
    Yang, Haomiao
    ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [27] PrivacyFL: A Simulator for Privacy-Preserving and Secure Federated Learning
    Mugunthan, Vaikkunth
    Peraire-Bueno, Anton
    Kagal, Lalana
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 3085 - 3092
  • [28] Fedlabx: a practical and privacy-preserving framework for federated learning
    Yan, Yuping
    Kamel, Mohammed B. M.
    Zoltay, Marcell
    Gal, Marcell
    Hollos, Roland
    Jin, Yaochu
    Peter, Ligeti
    Tenyi, Akos
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (01) : 677 - 690
  • [29] Privacy-Preserving Federated Learning Using Homomorphic Encryption
    Park, Jaehyoung
    Lim, Hyuk
    APPLIED SCIENCES-BASEL, 2022, 12 (02):
  • [30] PFLM: Privacy-preserving federated learning with membership proof
    Jiang, Changsong
    Xu, Chunxiang
    Zhang, Yuan
    INFORMATION SCIENCES, 2021, 576 : 288 - 311