Blow-up and strong instability of standing waves for the NLS-δ equation on a star graph

被引:12
作者
Goloshchapova, Nataliia [1 ]
Ohta, Masahito [2 ]
机构
[1] IME USP, Dept Math, Rua Matao 1010,Cidade Univ, BR-05508090 Sao Paulo, SP, Brazil
[2] Tokyo Univ Sci, Dept Math, Shinjuku Ku, 1-3 Kagurazaka, Tokyo 1628601, Japan
基金
巴西圣保罗研究基金会;
关键词
delta- and delta '-interaction; Nonlinear Schrodinger equation; Strong instability; Standing wave; Star graph; Virial identity; NONLINEAR SCHRODINGER-EQUATION; ORBITAL STABILITY; STATES;
D O I
10.1016/j.na.2020.111753
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study strong instability (by blow-up) of the standing waves for the nonlinear Schrodinger equation with d-interaction on a star graph Gamma. The key ingredient is a novel variational technique applied to the standing wave solutions being minimizers of a specific variational problem. We also show well-posedness of the corresponding Cauchy problem in the domain of the self-adjoint operator which defines d-interaction. This permits to prove virial identity for the H-1-solutions to the Cauchy problem. We also prove certain strong instability results for the standing waves of the NLS-delta' equation on the line. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:23
相关论文
共 21 条
[1]   Stable standing waves for a NLS on star graphs as local minimizers of the constrained energy [J].
Adami, Riccardo ;
Cacciapuoti, Claudio ;
Finco, Domenico ;
Noja, Diego .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (10) :7397-7415
[2]   Variational properties and orbital stability of standing waves for NLS equation on a star graph [J].
Adami, Riccardo ;
Cacciapuoti, Claudio ;
Finco, Domenico ;
Noja, Diego .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (10) :3738-3777
[3]   Stability and Symmetry-Breaking Bifurcation for the Ground States of a NLS with a δ′ Interaction [J].
Adami, Riccardo ;
Noja, Diego .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 318 (01) :247-289
[4]   FUNDAMENTAL SOLUTION OF THE HEAT AND SCHRODINGER-EQUATIONS WITH POINT INTERACTION [J].
ALBEVERIO, S ;
BRZEZNIAK, Z ;
DABROWSKI, L .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 130 (01) :220-254
[5]  
Albeverio S., 2005, Solvable Models in Quantum Mechanics, VSecond
[6]  
Angulo J., 2018, DISCRETE CONT DYN-A, V38, P5039
[7]  
[Anonymous], 2003, Am. Math. Soc.
[8]   DISPERSION FOR THE SCHRODINGER EQUATION ON THE LINE WITH MULTIPLE DIRAC DELTA POTENTIALS AND ON DELTA TREES [J].
Banica, Valeria ;
Ignat, Liviu I. .
ANALYSIS & PDE, 2014, 7 (04) :903-927
[9]  
BERESTYCKI H, 1981, CR ACAD SCI I-MATH, V293, P489
[10]   Ground state and orbital stability for the NLS equation on a general starlike graph with potentials [J].
Cacciapuoti, Claudio ;
Finco, Domenico ;
Noja, Diego .
NONLINEARITY, 2017, 30 (08) :3271-3303