Comparison of Three Methods for Estimating Land Surface Temperature from Landsat 8-TIRS Sensor Data

被引:105
作者
Garcia-Santos, Vicente [1 ]
Cuxart, Joan [2 ]
Martinez-Villagrasa, Daniel [2 ]
Antonia Jimenez, Maria [2 ]
Simo, Gemma [2 ]
机构
[1] Univ Valencia, EOLAB SPAIN SL, Parc Cient, Valencia 46980, Spain
[2] Univ Balearic Isl, Dept Phys, Palma De Mallorca 07122, Spain
关键词
land surface temperature; thermal infrared data; LST validation; heterogeneous site; Landsat; 8-TIRS; SPACEBORNE THERMAL EMISSION; SPLIT-WINDOW ALGORITHM; RETRIEVAL; SATELLITE;
D O I
10.3390/rs10091450
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
After Landsat 8 was launched in 2013, it was observed that for Thermal Infrared sensor (TIRS) bands, radiance from outside of an instrument's field-of-view produced a non-uniform ghost signal across the focal plane that varied depending on the out-of-scene content (i.e., the stray light effect). A new stray light correction algorithm (SLCA) is currently operational and has been implemented into the United States Geological Survey (USGS) ground system since February 2017. The SLCA has also been applied to reprocess historical Landsat 8 scenes. After approximately two years of SLCA implementation, more land surface temperature (LST) validation studies are required to check the effect of correction in the estimation of LST from different retrieval algorithms. For this purpose, three different LST estimation method algorithms (i.e., the radiative transfer equation (RTE), single-channel algorithm (SCA), and split-window algorithm (SWA)) have been assessed. The study site is located on the campus of the University of Balearic Islands on the island of Mallorca (Spain) in the western Mediterranean Sea. The site is considered a heterogeneous area that is composed of different types of surfaces, such as buildings, asphalt roads, farming areas, sloped terrains, orange fields, almond trees, lawns, and some natural vegetation regions. Data from 21 scenes, which were acquired by the Landsat 8-TIRS sensor and extracted from a 100 x 100 m(2) pixel, were used to retrieve the LST with different algorithms; then, they were compared with in situ LST measurements from a broadband thermal infrared radiometer located on the same Landsat 8 pixel. The results show good performances of the three methods, with the SWA showing the lowest observed RMSE (within 1.6-2 K), whereas the SCA applied to the TIRS band 10 (10 mu m) was also appropriate, with a RMSE ranging within 2.0-2.3 K. The LST estimates using the RTE algorithm display the highest observed RMSE values (within 2.0-3.6 K) of all of the compared methods, but with an almost unbiased value of -0.1 K for the case of techniques applied to band 10 data. The SWAs are the preferred method to estimate the LST in our study area. However, further validation studies around the world are required.
引用
收藏
页数:13
相关论文
共 27 条
[1]  
[Anonymous], 2005, P SPIE
[2]  
[Anonymous], 2006, P SPIE
[3]  
[Anonymous], 2016, LANDS 8 L8 SCI DAT U
[4]   Landsat-8 Thermal Infrared Sensor (TIRS) Vicarious Radiometric Calibration [J].
Barsi, Julia A. ;
Schott, John R. ;
Hook, Simon J. ;
Raqueno, Nina G. ;
Markham, Brian L. ;
Radocinski, Robert G. .
REMOTE SENSING, 2014, 6 (11) :11607-11626
[5]   DERIVABLE FORMULA FOR LONG-WAVE RADIATION FROM CLEAR SKIES [J].
BRUTSAERT, W .
WATER RESOURCES RESEARCH, 1975, 11 (05) :742-744
[6]   An Improved Single-Channel Method to Retrieve Land Surface Temperature from the Landsat-8 Thermal Band [J].
Cristobal, Jordi ;
Jimenez-Munoz, Juan C. ;
Prakash, Anupma ;
Mattar, Cristian ;
Skokovic, Drazen ;
Sobrino, Jose A. .
REMOTE SENSING, 2018, 10 (03)
[7]   A Practical Split-Window Algorithm for Estimating Land Surface Temperature from Landsat 8 Data [J].
Du, Chen ;
Ren, Huazhong ;
Qin, Qiming ;
Meng, Jinjie ;
Zhao, Shaohua .
REMOTE SENSING, 2015, 7 (01) :647-665
[8]   Study of Temperature Heterogeneities at Sub-Kilometric Scales and Influence on Surface-Atmosphere Energy Interactions [J].
Garcia-Santos, Vicente ;
Cuxart, Joan ;
Antonia Jimenez, Maria ;
Martinez-Villagrasa, Daniel ;
Simo, Gemma ;
Picos, Rodrigo ;
Caselles, Vicente .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (02) :640-654
[9]   Leveraging intercalibration techniques to support stray-light removal from Landsat 8 Thermal Infrared Sensor data [J].
Gerace, Aaron ;
Montanaro, Matthew ;
Connal, Ryan .
JOURNAL OF APPLIED REMOTE SENSING, 2017, 12
[10]   Derivation and validation of the stray light correction algorithm for the thermal infrared sensor onboard Landsat 8 [J].
Gerace, Aaron ;
Montanaro, Matthew .
REMOTE SENSING OF ENVIRONMENT, 2017, 191 :246-257