A method to predict resonance frequencies and modal loss factors of bare and damped samples, using constrained layer damping treatment, under free-free boundary conditions is proposed. In a first phase, measurements of the frequency response functions of these two specimens are performed. In a second phase, a finite element model of the undamped sample is developed. The novelty lies in the consistent modelling of the suspension with spring-damper elements defined with stiffness and damping coefficients with fixed values over the whole considered frequency range. By updating these, the agreement between experiments and simulation is further improved. In a third phase, a finite element model of the damped sample, with constrained layer damping material, is realized. A good agreement with experimental results is obtained thanks to an optimization algorithm used to determine the material parameters of the viscoelastic layer at various frequency. A comparison with experimental results, from a Dynamic Mechanical Analysis, confirms the consistency of the results from the optimization process. (C) 2011 Elsevier Ltd. All rights reserved.