Symmetric kernel of Rademacher multiplicator spaces

被引:9
作者
Astashkin, SV
Curbera, GP
机构
[1] Univ Seville, Fac Matemat, E-41080 Seville, Spain
[2] Samara State Univ, Dept Math, Samara 443011, Russia
关键词
Rademacher functions; rearrangement invariant space; Marcinkiewicz spaces; orlicz spaces; interpolation of operators; K-functional;
D O I
10.1016/j.jfa.2005.01.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a rearrangement invariant (r.i.) function space on [0,1]. We consider the Rademacher or multiplicator space Lambda(R, X) of measurable functions x such that xh is an element of X for every a.e. converging series h=Sigma a(n)r(n) is an element of X, where (r(n)) are the Rademacher functions. We show that for a broad class of r.i. spaces X, the space Lambda(R, X) is not r.i. In this case, we identify the symmetric kernel Syrn (R, X) of the Rademacher multiplicator space and study when Syrn (R, X) reduces to L-infinity. In the opposite direction, we find new examples of r.i. spaces for which Lambda(R, X) is r.i. We consider in detail the case when X is a Marcinkiewicz or an exponential Orlicz space. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:173 / 192
页数:20
相关论文
共 21 条
[1]  
[Anonymous], ANAL MATH, DOI 10.1007/BF01930966
[2]   Extrapolation functors on a family of scales generated by the real interpolation method [J].
Astashkin, SV .
SIBERIAN MATHEMATICAL JOURNAL, 2005, 46 (02) :205-225
[3]   On the multiplier space generated by the Rademacher system [J].
Astashkin, SV .
MATHEMATICAL NOTES, 2004, 75 (1-2) :158-165
[4]   Some new extrapolation estimates for the scale of LP-spaces [J].
Astashkin, SV .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2003, 37 (03) :221-224
[5]  
BENNETT C, 1980, DISS MATH, V175
[6]  
Bennett C., 1988, INTERPOLATION OPERAT
[7]  
BIKTASHEVA VA, 1984, SIBERIAN MATH J+, V25, P531
[8]  
BRAVERMAN MS, 1994, INDEPENDENT RANDOM V
[9]  
Brudnyi Y A., 1991, Interpolation Functors and Interpolations Spaces, DOI 1,2.2,2.2,2,2.2,2.3,2.4,3,3,3,4,4.3,4,4.6,4,4,4.15,5.4
[10]   Multiplication operators on the space of Rademacher series in rearrangement invariant spaces [J].
Curbera, GP ;
Rodin, VA .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2003, 134 :153-162