Clustering of Microarray data via clique partitioning

被引:32
|
作者
Kochenberger, G [1 ]
Glover, F
Alidaee, B
Wang, HB
机构
[1] Univ Colorado, Sch Business, Denver, CO 80202 USA
[2] Univ Colorado, Leeds Sch Business, Boulder, CO 80309 USA
[3] Univ Mississippi, Sch Business, University, MS 38677 USA
[4] Texas A&M Int Univ, Sch Business, Laredo, TX 78041 USA
关键词
clustering; clique partitioning; metaheuristics;
D O I
10.1007/s10878-005-1861-1
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Microarrays are repositories of gene expression data that hold tremendous potential for new understanding, leading to advances in functional genomics and molecular biology. Cluster analysis (CA) is an early step in the exploration of such data that is useful for purposes of data reduction, exposing hidden patterns, and the generation of hypotheses regarding the relationship between genes and phenotypes. In this paper we present a new model for the clique partitioning problem and illustrate how it can be used to perform cluster analysis in this setting.
引用
收藏
页码:77 / 92
页数:16
相关论文
共 50 条
  • [41] Graph Clustering via Cohesiveness-aware Vector Partitioning
    Shiokawa, Hiroaki
    Futamura, Yasunori
    IIWAS2018: THE 20TH INTERNATIONAL CONFERENCE ON INFORMATION INTEGRATION AND WEB-BASED APPLICATIONS & SERVICES, 2014, : 33 - 40
  • [42] Clustering of DNA Microarray Temporal Data based on the Autoregressive Model
    Choong, Miew Keen
    Yan, Hong
    Levy, David
    2008 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), VOLS 1-6, 2008, : 71 - 75
  • [43] Descriptive and Systematic Comparison of Clustering Methods in Microarray Data Analysis
    Kim, Seo Young
    KOREAN JOURNAL OF APPLIED STATISTICS, 2009, 22 (01) : 89 - 106
  • [44] An evolutionary clustering algorithm for gene expression microarray data analysis
    Ma, Patrick C. H.
    Chan, Keith C. C.
    Yao, Xin
    Chiu, David K. Y.
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (03) : 296 - 314
  • [45] Improving Clustering of MicroRNA Microarray Data by Incorporating Functional Similarity
    Yang, Yang
    Wu, Zhichen
    Kong, Wei
    CURRENT BIOINFORMATICS, 2018, 13 (01) : 34 - 41
  • [46] Two Way Clustering of Microarray Data Using a Hybrid Approach
    Malutan, Raul
    Belean, Bogdan
    Gomez Vilda, Pedro
    Borda, Monica
    2011 34TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2011, : 417 - 420
  • [47] Verification of Improving a Clustering Algorithm for Microarray Data with Missing Values
    Kim, SuYoung
    KOREAN JOURNAL OF APPLIED STATISTICS, 2011, 24 (02) : 315 - 321
  • [48] Branch-and-price-and-cut on the clique partitioning problem with minimum clique size requirement
    Ji, Xiaoyun
    Mitchell, John E.
    DISCRETE OPTIMIZATION, 2007, 4 (01) : 87 - 102
  • [49] Bipartite isoperimetric graph partitioning for data co-clustering
    Manjeet Rege
    Ming Dong
    Farshad Fotouhi
    Data Mining and Knowledge Discovery, 2008, 16 : 276 - 312
  • [50] An improved branch-and-bound clustering approach for data partitioning
    Cheng, Chun-Hung
    Wong, Kam-Fai
    Woo, Kwan-Ho
    INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2011, 18 (02) : 231 - 255