Clustering of Microarray data via clique partitioning

被引:32
|
作者
Kochenberger, G [1 ]
Glover, F
Alidaee, B
Wang, HB
机构
[1] Univ Colorado, Sch Business, Denver, CO 80202 USA
[2] Univ Colorado, Leeds Sch Business, Boulder, CO 80309 USA
[3] Univ Mississippi, Sch Business, University, MS 38677 USA
[4] Texas A&M Int Univ, Sch Business, Laredo, TX 78041 USA
关键词
clustering; clique partitioning; metaheuristics;
D O I
10.1007/s10878-005-1861-1
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Microarrays are repositories of gene expression data that hold tremendous potential for new understanding, leading to advances in functional genomics and molecular biology. Cluster analysis (CA) is an early step in the exploration of such data that is useful for purposes of data reduction, exposing hidden patterns, and the generation of hypotheses regarding the relationship between genes and phenotypes. In this paper we present a new model for the clique partitioning problem and illustrate how it can be used to perform cluster analysis in this setting.
引用
收藏
页码:77 / 92
页数:16
相关论文
共 50 条
  • [31] Finding best algorithmic components for clustering microarray data
    Milan Vukićević
    Kathrin Kirchner
    Boris Delibašić
    Miloš Jovanović
    Johannes Ruhland
    Milija Suknović
    Knowledge and Information Systems, 2013, 35 : 111 - 130
  • [32] Combinatorial and machine learning approaches in clustering microarray data
    Pozzi, Sergio
    Zoppis, Italo
    Mauri, Giancarlo
    BIOLOGICAL AND ARTIFICIAL INTELLIGENCE ENVIRONMENTS, 2005, : 63 - 71
  • [33] Distance based feature selection for clustering microarray data
    Dash, Manoranjan
    Gopalkrishnan, Vivekanand
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, 2008, 4947 : 512 - 519
  • [34] Automatic Generation of Merge Factor for Clustering Microarray Data
    Pavan, K. Karteeka
    Rao, Allam Appa
    Rao, A. V. Dattatreya
    Sridhar, G. R.
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2008, 8 (09): : 127 - 131
  • [35] Finding best algorithmic components for clustering microarray data
    Vukicevic, Milan
    Kirchner, Kathrin
    Delibasic, Boris
    Jovanovic, Milos
    Ruhland, Johannes
    Suknovic, Milija
    KNOWLEDGE AND INFORMATION SYSTEMS, 2013, 35 (01) : 111 - 130
  • [36] Efficient Large Scale Clustering based on Data Partitioning
    Bendechache, Malika
    Le-Khac, Nhien-An
    Kechadi, M-Tahar
    PROCEEDINGS OF 3RD IEEE/ACM INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS, (DSAA 2016), 2016, : 612 - 621
  • [37] A Hybrid Evolutionary Algorithm for the Clique Partitioning Problem
    Lu, Zhi
    Zhou, Yi
    Hao, Jin-Kao
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (09) : 9391 - 9403
  • [38] Statistical Analysis of Microarray Data Clustering using NMF, Spectral Clustering, Kmeans, and GMM
    Mirzal, Andri
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (02) : 1173 - 1192
  • [39] The clique partitioning problem: Facets and patching facets
    Oosten, M
    Rutten, JHGC
    Spieksma, FCR
    NETWORKS, 2001, 38 (04) : 209 - 226
  • [40] On the clique partitioning problem in weighted interval graphs
    Myung, Young-Soo
    THEORETICAL COMPUTER SCIENCE, 2008, 396 (1-3) : 290 - 293