[3] Univ Tsukuba, Fac Engn Informat & Syst, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058573, Japan
来源:
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION
|
2022年
/
107卷
基金:
加拿大自然科学与工程研究理事会;
日本学术振兴会;
关键词:
Nonlinear heat equation;
Heteroclinic connections;
Global existence of solution;
Rigorous numerics;
PARAMETERIZATION METHOD;
BLOW-UP;
CRITICAL EXPONENTS;
HEAT-EQUATION;
D O I:
10.1016/j.cnsns.2021.106188
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, we consider the dynamics of solutions to complex-valued evolutionary partial differential equations (PDEs) and show existence of heteroclinic orbits from nontrivial equilibria to zero via computer-assisted proofs. We also show that the existence of unbounded solutions along unstable manifolds at the equilibrium follows from the existence of heteroclinic orbits. Our computer-assisted proof consists of three separate techniques of rigorous numerics: an enclosure of a local unstable manifold at the equilibria, a rigorous integration of PDEs, and a constructive validation of a trapping region around the zero equilibrium. (C) 2021 The Authors. Published by Elsevier B.V.