Unique response Roman domination in graphs

被引:10
作者
Targhi, E. Ebrahimi [1 ]
Rad, N. Jafari [1 ]
Volkmann, L. [2 ]
机构
[1] Shahrood Univ Technol, Dept Math, Shahrood, Iran
[2] Rhein Westfal TH Aachen, Lehrstuhl Math 2, D-52056 Aachen, Germany
关键词
Domination; Roman domination;
D O I
10.1016/j.dam.2011.03.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A function f : V(G) -> {0, 1, 2} is a Roman dominating function if every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. A function f : v(G) -> {0, 1, 2} with the ordered partition (V-0, V-1. V-2) of V(G), where V-i ={v is an element of V(G) | f(v) = i} for i = 0, 1, 2, is a unique response Roman function if X E V0 implies |N(x) boolean AND V-2| <= 1 and x is an element of V-1 boolean OR V-2 implies that |N(x) boolean AND V-2| = 0. A function f : V (G) -> {0, 1, 2} is a unique response Roman dominating function if it is a unique response Roman function and a Roman dominating function. The unique response Roman domination number of G, denoted by u(R)(G), is the minimum weight of a unique response Roman dominating function. In this paper we study the unique response Roman domination number of graphs and present bounds for this parameter. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1110 / 1117
页数:8
相关论文
共 8 条
  • [1] ADABI M, 2009, PROPERTIES IND UNPUB
  • [2] [Anonymous], 2001, Introduction to Graph Theory
  • [3] EXTREMAL PROBLEMS FOR ROMAN DOMINATION
    Chambers, Erin W.
    Kinnersley, Bill
    Prince, Noah
    West, Douglas B.
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (03) : 1575 - 1586
  • [4] Roman domination in graphs
    Cockayne, EJ
    Dreyer, PA
    Hedetniemi, SM
    Hedetniemi, ST
    [J]. DISCRETE MATHEMATICS, 2004, 278 (1-3) : 11 - 22
  • [5] Haynes TW, 1998, Fundamentals of domination in graphs, V1st, DOI [DOI 10.1201/9781482246582, 10.1201/9781482246582]
  • [6] Defendens imperium romanum: A classical problem in military strategy
    ReVelle, CS
    Rosing, KE
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2000, 107 (07) : 585 - 594
  • [7] Roman dominating influence parameters
    Rubalcaba, Robert R.
    Slater, Peter J.
    [J]. DISCRETE MATHEMATICS, 2007, 307 (24) : 3194 - 3200
  • [8] Defend the Roman Empire!
    Stewart, I
    [J]. SCIENTIFIC AMERICAN, 1999, 281 (06) : 136 - +