Exploring predictive QSAR models for hepatocyte toxicity of phenols using QTMS descriptors

被引:32
|
作者
Roy, Kunal [1 ]
Popelier, Paul L. A. [1 ]
机构
[1] Manchester Interdisciplinary Bioctr MIB, Manchester M1 7DN, Lancs, England
关键词
QTMS; toxicity; ab initio; phenols; QSAR; external validation; electron density; atoms in molecules; quantum chemical topology;
D O I
10.1016/j.bmcl.2008.03.035
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
We construct predictive QSAR models for hepatocyte toxicity data of phenols using Quantum Topological Molecular Similarity (QTMS) descriptors along with hydrophobicity (log P) as predictor variables. The QTMS descriptors were calculated at different levels of theory including AM1, HF/3-21G(d), HF/6-31G( d), B3LYP/6-31+G(d,p), B3LYP/6-311+ G(2d,p) and MP2/6-311+ G( 2d, p). The external predictability of the best models at the higher levels of theory is higher than that at the lower levels. Moreover, the best QTMS models are better in external predictability than the PLS models using pK(a) and Hammett sigma(+) along with logP. The current study implies the advantage of quantum chemically derived descriptors over physicochemical (experimentally derived or tabular) electronic descriptors in QSAR studies. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2604 / 2609
页数:6
相关论文
共 50 条
  • [1] Predictive QSAR Models for the Toxicity of Disinfection Byproducts
    Qin, Litang
    Zhang, Xin
    Chen, Yuhan
    Mo, Lingyun
    Zeng, Honghu
    Liang, Yanpeng
    MOLECULES, 2017, 22 (10)
  • [2] An evaluation of global QSAR models for the prediction of the toxicity of phenols to Tetrahymena pyriformis
    Enoch, S. J.
    Cronin, M. T. D.
    Schultz, T. W.
    Madden, J. C.
    CHEMOSPHERE, 2008, 71 (07) : 1225 - 1232
  • [3] QSAR Analyzes for the Predictive Toxicity of Substituted Phenols and Anilines to Fish (carp)
    Sun, Ping
    Gao, Shumei
    Liu, Hiu
    Chen, Jianting
    PROGRESS IN ENVIRONMENTAL PROTECTION AND PROCESSING OF RESOURCE, PTS 1-4, 2013, 295-298 : 109 - +
  • [4] Two QSAR models for predicting the toxicity of chemicals towards Tetrahymena pyriformis based on topological-norm descriptors and spatial-norm descriptors
    Jia, Q.
    Wang, S.
    Yu, M.
    Wang, Q.
    Yan, F.
    SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 2023, 34 (02) : 147 - 161
  • [5] QSAR study of the toxicity of nitrobenzenes to Tetrahymena pyriformis using quantum chemical descriptors
    Bellifa, Khadidja
    Mekelleche, Sidi Mohamed
    ARABIAN JOURNAL OF CHEMISTRY, 2016, 9 : S1683 - S1689
  • [6] Prediction of the Toxicity of Binary Mixtures by QSAR Approach Using the Hypothetical Descriptors
    Wang, Ting
    Tang, Lili
    Luan, Feng
    Cordeiro, M. Natalia D. S.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (11)
  • [7] QSAR Models for Predicting Toxicity of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans Using Quantum Chemical Descriptors
    Diao, Jianxiong
    Li, Yang
    Shi, Shuqiong
    Sun, Ye
    Sun, Ying
    BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY, 2010, 85 (02) : 109 - 115
  • [8] QSAR Models for Predicting Toxicity of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans Using Quantum Chemical Descriptors
    Jianxiong Diao
    Yang Li
    Shuqiong Shi
    Ye Sun
    Ying Sun
    Bulletin of Environmental Contamination and Toxicology, 2010, 85 : 109 - 115
  • [9] Exploring simple, transparent, interpretable and predictive QSAR models for classification and quantitative prediction of rat toxicity of ionic liquids using OECD recommended guidelines
    Das, Rudra Narayan
    Roy, Kunal
    Popelier, Paul L. A.
    CHEMOSPHERE, 2015, 139 : 163 - 173
  • [10] Exploring the impact of size of training sets for the development of predictive QSAR models
    Roy, Partha Pratim
    Leonard, J. Thomas
    Roy, Kunal
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2008, 90 (01) : 31 - 42