Deformation quantization of classical fields

被引:28
|
作者
García-Compeán, H
Plebanski, JF
Przanowski, M
Turrubiates, FJ
机构
[1] Inst Politecn Nacl, Dept Fis, Ctr Invest & Estudios Avanzados, Mexico City 07000, DF, Mexico
[2] Tech Univ Lodz, Inst Phys, PL-93005 Lodz, Poland
[3] Inst Politecn Nacl, Dept Fis, Ctr Invest & Estudios Avanzados, Mexico City 07000, DF, Mexico
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2001年 / 16卷 / 14期
关键词
deformation quantization; field theory;
D O I
10.1142/S0217751X01003652
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We study the deformation quantization of scalar and Abelian gauge classical free fields. Stratonovich-Weyl quantizer, star products and Wigner functionals are obtained in field and oscillator variables. The Abelian gauge theory is particularly intriguing since the Wigner functional is factorized into a physical part and the other one containing the constraints only. Some effects of nontrivial topology within the deformation quantization formalism are also considered.
引用
收藏
页码:2533 / 2558
页数:26
相关论文
共 50 条
  • [41] Deformation quantization in algebraic geometry
    Yekutieli, A
    ADVANCES IN MATHEMATICS, 2005, 198 (01) : 383 - 432
  • [42] Wick rotations in deformation quantization
    Schmitt, Philipp
    Schotz, Matthias
    REVIEWS IN MATHEMATICAL PHYSICS, 2022, 34 (01)
  • [43] Operads and motives in deformation quantization
    Kontsevich, M
    LETTERS IN MATHEMATICAL PHYSICS, 1999, 48 (01) : 35 - 72
  • [44] Nearly associative deformation quantization
    Vassilevich, Dmitri
    Costa Oliveira, Fernando Martins
    LETTERS IN MATHEMATICAL PHYSICS, 2018, 108 (10) : 2293 - 2301
  • [45] Deformation quantization of Leibniz algebras
    Dherin, Benoit
    Wagemann, Friedrich
    ADVANCES IN MATHEMATICS, 2015, 270 : 21 - 48
  • [46] Deformation quantization of contact manifolds
    Boris M. Elfimov
    Alexey A. Sharapov
    Letters in Mathematical Physics, 2022, 112
  • [47] Quot scheme and deformation quantization
    Biswas, Indranil
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2024, 134 (02):
  • [48] Nearly associative deformation quantization
    Dmitri Vassilevich
    Fernando Martins Costa Oliveira
    Letters in Mathematical Physics, 2018, 108 : 2293 - 2301
  • [49] The Picard Groupoid in Deformation Quantization
    Stefan Waldmann
    Letters in Mathematical Physics, 2004, 69 : 223 - 235
  • [50] Deformation quantization for Heisenberg supergroup
    Bieliavsky, Pierre
    de Goursac, Axel
    Tuynman, Gijs
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (03) : 549 - 603