The shortest vector in a lattice is hard to approximate to within some constant.
被引:42
作者:
Micciancio, D
论文数: 0引用数: 0
h-index: 0
机构:
MIT, Comp Sci Lab, Cambridge, MA 02139 USAMIT, Comp Sci Lab, Cambridge, MA 02139 USA
Micciancio, D
[1
]
机构:
[1] MIT, Comp Sci Lab, Cambridge, MA 02139 USA
来源:
39TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS
|
1998年
关键词:
D O I:
10.1109/SFCS.1998.743432
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
We show the shortest vector problem in the l(2) norm is NP-hard (for randomized reductions) to approximate within any constant factor less than root 2. We also give a deterministic reduction under a reasonable number theoretic conjecture. Analogous results hold in any l(p) norm (p greater than or equal to 1). In proving our NP-hardness result, we give an alternative construction satisfying Ajtai's probabilistic variant of Sauer's lemma; that greatly simplifies Ajtai's original proof.