Ulam-Hyers-Mittag-Leffler stability for Ψ-Hilfer fractional-order delay differential equations

被引:60
作者
Liu, Kui [1 ]
Wang, JinRong [2 ,3 ]
O'Regan, Donal [4 ]
机构
[1] Guizhou Inst Technol, Coll Sci, Guiyang, Guizhou, Peoples R China
[2] Guizhou Univ, Dept Math, Guiyang, Guizhou, Peoples R China
[3] Qufu Normal Univ, Sch Math Sci, Qufu, Peoples R China
[4] Natl Univ Ireland, Sch Math Stat & Appl Math, Galway, Ireland
关键词
Psi-Hilfer fractional-order delay differential equations; Solutions; Existence; Stability; POSITIVE SOLUTIONS; SYSTEM MODEL; EXISTENCE;
D O I
10.1186/s13662-019-1997-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present results on the existence, uniqueness, and Ulam-Hyers-Mittag-Leffler stability of solutions to a class of Psi-Hilfer fractional-order delay differential equations. We use the Picard operator method and a generalized Gronwall inequality involved in a Psi-Riemann-Liouville fractional integral. Finally, we give two examples to illustrate our main theorems.
引用
收藏
页数:12
相关论文
共 50 条
[31]   Existence and Mittag-Leffler-Ulam-stability results of sequential fractional hybrid pantograph equations [J].
Houas, Mohamed ;
Abbas, Mohamed I. ;
Martinez, Francisco .
FILOMAT, 2023, 37 (20) :6891-6903
[32]   Ulam-Hyers stabilities of fractional functional differential equations [J].
Sousa, J. Vanterler da C. ;
de Oliveira, E. Capelas ;
Rodrigues, F. G. .
AIMS MATHEMATICS, 2020, 5 (02) :1346-1358
[33]   On the Hyers-Ulam stability of Riemann-Liouville multi-order fractional differential equations [J].
Cuong, D. X. .
AFRIKA MATEMATIKA, 2019, 30 (7-8) :1041-1047
[34]   Existence and Ulam stability for fractional differential equations of Hilfer-Hadamard type [J].
Abbas, S. ;
Benchohra, M. ;
Lagreg, J. E. ;
Alsaedi, A. ;
Zhou, Y. .
ADVANCES IN DIFFERENCE EQUATIONS, 2017,
[35]   Existence and Ulam stability for fractional differential equations of Hilfer-Hadamard type [J].
S Abbas ;
M Benchohra ;
JE Lagreg ;
A Alsaedi ;
Y Zhou .
Advances in Difference Equations, 2017
[36]   Hyers-Ulam stability of linear fractional differential equations with variable coefficients [J].
Liu, Hui ;
Li, Yongjin .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[37]   Mittag-Leffler ultimate boundedness of fractional-order nonautonomous delay systems [J].
Bao, Baizeng ;
Xu, Liguang .
CHAOS SOLITONS & FRACTALS, 2025, 197
[38]   The Ulam Stability of High-Order Variable-Order φ-Hilfer Fractional Implicit Integro-Differential Equations [J].
Wang, Peiguang ;
Han, Bing ;
Bao, Junyan .
FRACTAL AND FRACTIONAL, 2024, 8 (09)
[39]   Ulam-Hyers stability of fractional Langevin equations [J].
Wang, JinRong ;
Li, Xuezhu .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 258 :72-83
[40]   Results on Ulam-Hyers stability of nonlinear Chen system with fractional-order derivative [J].
Boulaaras, Salah ;
Arunachalam, Selvam ;
Sriramulu, Sabarinathan .
ASIAN JOURNAL OF CONTROL, 2025,