Ulam-Hyers-Mittag-Leffler stability for Ψ-Hilfer fractional-order delay differential equations

被引:60
作者
Liu, Kui [1 ]
Wang, JinRong [2 ,3 ]
O'Regan, Donal [4 ]
机构
[1] Guizhou Inst Technol, Coll Sci, Guiyang, Guizhou, Peoples R China
[2] Guizhou Univ, Dept Math, Guiyang, Guizhou, Peoples R China
[3] Qufu Normal Univ, Sch Math Sci, Qufu, Peoples R China
[4] Natl Univ Ireland, Sch Math Stat & Appl Math, Galway, Ireland
关键词
Psi-Hilfer fractional-order delay differential equations; Solutions; Existence; Stability; POSITIVE SOLUTIONS; SYSTEM MODEL; EXISTENCE;
D O I
10.1186/s13662-019-1997-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present results on the existence, uniqueness, and Ulam-Hyers-Mittag-Leffler stability of solutions to a class of Psi-Hilfer fractional-order delay differential equations. We use the Picard operator method and a generalized Gronwall inequality involved in a Psi-Riemann-Liouville fractional integral. Finally, we give two examples to illustrate our main theorems.
引用
收藏
页数:12
相关论文
共 50 条
[21]   Non-instantaneous impulsive fractional-order delay differential systems with Mittag-Leffler kernel [J].
Kavitha, Velusamy ;
Arjunan, Mani Mallika ;
Baleanu, Dumitru .
AIMS MATHEMATICS, 2022, 7 (05) :9353-9372
[22]   QUALITATIVE ANALYSIS OF IMPLICIT DELAY MITTAG-LEFFLER-TYPE FRACTIONAL DIFFERENTIAL EQUATIONS [J].
Yao, Shao-Wen ;
Sughra, Yasmeen ;
Asma ;
Inc, MustafA ;
Ansari, Khursheed J. .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (08)
[23]   Mittag-Leffler Stability for Impulsive Caputo Fractional Differential Equations [J].
Agarwal, R. ;
Hristova, S. ;
O'Regan, D. .
DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2021, 29 (03) :689-705
[24]   HYERS-ULAM-RASSIAS STABILITY OF κ-CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS [J].
Yao, Hui ;
Jin, Wenqi ;
Dong, Qixiang .
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (05) :2903-2921
[25]   Ulam-Hyers stability of pantograph fractional stochastic differential equations [J].
Mchiri, Lassaad ;
Ben Makhlouf, Abdellatif ;
Rguigui, Hafedh .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (04) :4134-4144
[26]   EXISTENCE AND HYERS-ULAM STABILITY RESULTS FOR A CLASS OF FRACTIONAL ORDER DELAY DIFFERENTIAL EQUATIONS WITH NON-INSTANTANEOUS IMPULSES [J].
Luo, Danfeng ;
Luo, Zhiguo .
MATHEMATICA SLOVACA, 2020, 70 (05) :1231-1248
[27]   Ulam-Hyers stability of Caputo-type fractional fuzzy stochastic differential equations with delay [J].
Luo, Danfeng ;
Wang, Xue ;
Caraballo, Tomas ;
Zhu, Quanxin .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 121
[28]   Ulam stability for nonlocal differential equations involving the Hilfer-Katugampola fractional derivative [J].
Benchohra, Mouffak ;
Bouriah, Soufyane ;
Henderson, Johnny .
AFRIKA MATEMATIKA, 2021, 32 (5-6) :829-851
[29]   Multiple Mittag-Leffler Stability of Fractional-Order Recurrent Neural Networks [J].
Liu, Peng ;
Zeng, Zhigang ;
Wang, Jun .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2017, 47 (08) :2279-2288
[30]   MITTAG-LEFFLER-HYERS-ULAM STABILITY OF EULER-CAUCHY DIFFERENTIAL EQUATION USING LAPLACE TRANSFORM [J].
Ahmed, A. B. I. .
TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2025, 15 (04) :791-802