Ulam-Hyers-Mittag-Leffler stability for Ψ-Hilfer fractional-order delay differential equations

被引:56
|
作者
Liu, Kui [1 ]
Wang, JinRong [2 ,3 ]
O'Regan, Donal [4 ]
机构
[1] Guizhou Inst Technol, Coll Sci, Guiyang, Guizhou, Peoples R China
[2] Guizhou Univ, Dept Math, Guiyang, Guizhou, Peoples R China
[3] Qufu Normal Univ, Sch Math Sci, Qufu, Peoples R China
[4] Natl Univ Ireland, Sch Math Stat & Appl Math, Galway, Ireland
关键词
Psi-Hilfer fractional-order delay differential equations; Solutions; Existence; Stability; POSITIVE SOLUTIONS; SYSTEM MODEL; EXISTENCE;
D O I
10.1186/s13662-019-1997-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present results on the existence, uniqueness, and Ulam-Hyers-Mittag-Leffler stability of solutions to a class of Psi-Hilfer fractional-order delay differential equations. We use the Picard operator method and a generalized Gronwall inequality involved in a Psi-Riemann-Liouville fractional integral. Finally, we give two examples to illustrate our main theorems.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Ulam–Hyers–Mittag-Leffler stability for ψ-Hilfer fractional-order delay differential equations
    Kui Liu
    JinRong Wang
    Donal O’Regan
    Advances in Difference Equations, 2019
  • [2] Ulam-Hyers-Mittag-Leffler stability for a ψ-Hilfer problem with fractional order and infinite delay
    Abdo, Mohammed S.
    Panchal, Satish K.
    Wahash, Hanan A.
    RESULTS IN APPLIED MATHEMATICS, 2020, 7
  • [3] ULAM-HYERS-MITTAG-LEFFLER STABILITY OF FRACTIONAL DIFFERENCE EQUATIONS WITH DELAY
    Butt, Rabia Ilyas
    Rehman, Mujeeb Ur
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (03) : 891 - 901
  • [4] Ulam-Hyers-Mittag-Leffler Stability for a Class of Nonlinear Fractional Reaction-Diffusion Equations with Delay
    Shah, Rahim
    Irshad, Natasha
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2025, 64 (01)
  • [5] Hyers-Ulam-Mittag-Leffler Stability for a System of Fractional Neutral Differential Equations
    Ahmad, Manzoor
    Jiang, Jiqiang
    Zada, Akbar
    Ali, Zeeshan
    Fu, Zhengqing
    Xu, Jiafa
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2020, 2020
  • [6] Ulam-Hyers type stability for ψ-Hilfer fractional differential equations with impulses and delay
    Lima, K. B.
    Sousa, J. Vanterler da C.
    de Oliveira, E. Capelas
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (08)
  • [7] ULAM-HYERS-RASSIAS MITTAG-LEFFLER STABILITY FOR THE DARBOUX PROBLEM FOR PARTIAL FRACTIONAL DIFFERENTIAL EQUATIONS
    Ben Makhlouf, Abdellatif
    Boucenna, Djalal
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2022, 51 (05) : 1541 - 1551
  • [8] Existence and Hyers-Ulam stability for a nonlinear singular fractional differential equations with Mittag-Leffler kernel
    Khan, Aziz
    Khan, Hasib
    Gomez-Aguilar, J. F.
    Abdeljawad, Thabet
    CHAOS SOLITONS & FRACTALS, 2019, 127 : 422 - 427
  • [9] On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the φ-Hilfer operator
    Sousa, J. Vanterler da C.
    Capelas de Oliveira, E.
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2018, 20 (03)
  • [10] Attractivity and Ulam-Hyers Stability Results for Fractional Delay Differential Equations
    Vivek, D.
    Kanagarajan, K.
    Elsayed, E. M.
    FILOMAT, 2022, 36 (17) : 5707 - 5724