PyRates-A Python']Python framework for rate-based neural simulations

被引:10
作者
Gast, Richard [1 ,2 ,3 ]
Rose, Daniel [3 ]
Salomon, Christoph [1 ,4 ]
Moeller, Harald E. [2 ]
Weiskopf, Nikolaus [3 ]
Knoesche, Thomas R. [1 ,4 ]
机构
[1] Max Planck Inst Human Cognit & Brain Sci, MEG & Cort Networks Grp, Leipzig, Saxony, Germany
[2] Max Planck Inst Human Cognit & Brain Sci, Nucl Magnet Resonance Grp, Leipzig, Saxony, Germany
[3] Max Planck Inst Human Cognit & Brain Sci, Neurophys Dept, Leipzig, Saxony, Germany
[4] TU Ilmenau, Inst Biomed Engn & Informat, Ilmenau, Thuringia, Germany
来源
PLOS ONE | 2019年 / 14卷 / 12期
基金
欧洲研究理事会;
关键词
LARGE-SCALE BRAIN; MASS MODEL; MATHEMATICAL-MODEL; DYNAMIC-MODELS; SOFTWARE; EEG; RESPONSES; MEG/EEG; RHYTHM;
D O I
10.1371/journal.pone.0225900
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In neuroscience, computational modeling has become an important source of insight into brain states and dynamics. A basic requirement for computational modeling studies is the availability of efficient software for setting up models and performing numerical simulations. While many such tools exist for different families of neural models, there is a lack of tools allowing for both a generic model definition and efficiently parallelized simulations. In this work, we present PyRates, a Python framework that provides the means to build a large variety of rate-based neural models. PyRates provides intuitive access to and modification of all mathematical operators in a graph, thus allowing for a highly generic model definition. For computational efficiency and parallelization, the model is translated into a compute graph. Using the example of two different neural models belonging to the family of rate-based population models, we explain the mathematical formalism, software structure and user interfaces of PyRates. We show via numerical simulations that the behavior of the PyRates model implementations is consistent with the literature. Finally, we demonstrate the computational capacities and scalability of PyRates via a number of benchmark simulations of neural networks differing in size and connectivity.
引用
收藏
页数:26
相关论文
共 59 条
  • [21] Dynamic causal modelling
    Friston, KJ
    Harrison, L
    Penny, W
    [J]. NEUROIMAGE, 2003, 19 (04) : 1273 - 1302
  • [22] Gansner ER, 2000, SOFTWARE PRACT EXPER, V30, P1203, DOI 10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.0.CO
  • [23] 2-N
  • [24] Gewaltig M.-O., 2007, Scholarpedia, V2, P1430
  • [25] High-Resolution fMRI Reveals Laminar Differences in Neurovascular Coupling between Positive and Negative BOLD Responses
    Goense, Jozien
    Merkle, Hellmut
    Logothetis, Nikos K.
    [J]. NEURON, 2012, 76 (03) : 629 - 639
  • [26] The Brian simulator
    Goodman, Dan F. M.
    Brette, Romain
    [J]. FRONTIERS IN NEUROSCIENCE, 2009, 3 (02): : 192 - 197
  • [27] MEG and EEG data analysis with MNE-Python']Python
    Gramfort, Alexandre
    Luessi, Martin
    Larson, Eric
    Engemann, Denis A.
    Strohmeier, Daniel
    Brodbeck, Christian
    Goj, Roman
    Jas, Mainak
    Brooks, Teon
    Parkkonen, Lauri
    Haemaelaeinen, Matti
    [J]. FRONTIERS IN NEUROSCIENCE, 2013, 7
  • [28] MNE software for processing MEG and EEG data
    Gramfort, Alexandre
    Luessi, Martin
    Larson, Eric
    Engemann, Denis A.
    Strohmeier, Daniel
    Brodbeck, Christian
    Parkkonen, Lauri
    Haemaelaeinen, Matti S.
    [J]. NEUROIMAGE, 2014, 86 : 446 - 460
  • [29] BioNet: A Python']Python interface to NEURON for modeling large-scale networks
    Gratiy, Sergey L.
    Billeh, Yazan N.
    Dai, Kael
    Mitelut, Catalin
    Feng, David
    Gouwens, Nathan W.
    Cain, Nicholas
    Koch, Christof
    Anastassiou, Costas A.
    Arkhipov, Anton
    [J]. PLOS ONE, 2018, 13 (08):
  • [30] Hagberg AA, 2008, EXPLORING NETWORK ST, P11, DOI DOI 10.1016/J.JELECTROCARD.2010.09.003