Effectiveness Analysis of Fumigation Strategy in Dengue Disease Prevention Program (Case Study : Jakarta Province, Indonesia)

被引:2
作者
Agustine, D. [1 ]
Mahatma, Y. [1 ]
Aldila, D. [2 ]
机构
[1] Jakarta State Univ, Fac Math & Nat Sci, Dept Math, Jakarta, Indonesia
[2] Univ Indonesia, Fac Math & Nat Sci, Dept Math, Depok 16424, Indonesia
来源
SYMPOSIUM ON BIOMATHEMATICS | 2015年 / 1651卷
关键词
Dengue; fumigation; worsening effect; basic reproductive ratio; AEDES-AEGYPTI;
D O I
10.1063/1.4914428
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Mathematical model of dengue disease with fumigation intervention for mosquito population will discussed in this article. Interaction between human and mosquitoes population will based on SIR-SI host-vector model. Side effect of fumigation where mosquito capable to developed a resistance to fumigation will be accommodated in to the model. Equilibrium points and basic reproductive ratio as the endemic criteria will be shown analytically. Some numerical results are shown to give a back up reasoning for analytical result. We conclude that resistance of mosquitoes to fumigation intervention play an important role in fumigation strategy.
引用
收藏
页码:25 / 32
页数:8
相关论文
共 18 条
[1]   On the Analysis of Effectiveness in Mass Application of Mosquito Repellent for Dengue Disease Prevention [J].
Aldila, D. ;
Soewono, E. ;
Nuraini, N. .
5TH INTERNATIONAL CONFERENCE ON RESEARCH AND EDUCATION IN MATHEMATICS (ICREM5), 2012, 1450 :103-109
[2]  
Aldila D., 2014, International Journal of Mathematics and Mathematical Sciences, V2014, DOI [10.1155/2014/273037, DOI 10.1155/2014/273037]
[3]   An optimal control problem arising from a dengue disease transmission model [J].
Aldila, Dipo ;
Goetz, Thomas ;
Soewono, Edy .
MATHEMATICAL BIOSCIENCES, 2013, 242 (01) :9-16
[4]  
Black H, 2010, TROPIKA NET J, V1, P1
[5]   The construction of next-generation matrices for compartmental epidemic models [J].
Diekmann, O. ;
Heesterbeek, J. A. P. ;
Roberts, M. G. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2010, 7 (47) :873-885
[6]  
DIEKMANN O, 1990, J MATH BIOL, V28, P365
[7]  
Diekmann O., 2000, MATH EPIDEMIOLOGY IN
[8]   A model for dengue disease with variable human population [J].
Esteva, L ;
Vargas, C .
JOURNAL OF MATHEMATICAL BIOLOGY, 1999, 38 (03) :220-240
[9]  
Gubler D., 1995, EMERGING INFECT DIS, V1, P2
[10]  
Halstead SB, 1988, J CHALL MOL BIO, V239, P476, DOI DOI 10.1126/SCIENCE.3277268