Auto-regressive model based input and parameter estimation for nonlinear finite element models

被引:34
作者
Castiglione, Juan [1 ]
Astroza, Rodrigo [1 ]
Azam, Saeed Eftekhar [2 ]
Linzell, Daniel [2 ]
机构
[1] Univ Andes, Fac Engn & Appl Sci, Bogota, Colombia
[2] Univ Nebraska, Dept Civil Engn, Lincoln, NE 68583 USA
基金
美国国家科学基金会;
关键词
Model updating; Input estimation; Finite element model; Kalman filter; Auto-regressive model; MINIMUM-VARIANCE INPUT; EXTENDED KALMAN FILTER; STATE ESTIMATION; STRUCTURAL SYSTEMS; FORCE IDENTIFICATION; DAMAGE DETECTION; EARTHQUAKE; SCHEME;
D O I
10.1016/j.ymssp.2020.106779
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A novel framework to accurately estimate nonlinear structural model parameters and unknown external inputs (i.e., loads) using sparse sensor networks is proposed and validated. The framework assumes a time-varying auto-regressive (TAR) model for unknown loads and develops a strategy to simultaneously estimate those loads and parameters of the nonlinear model using an unscented Kalman filter (UKF). First, it is confirmed that a Kalman filter (KF) allows to estimate TAR parameters for a measured, earthquake, acceleration time-history. The KF-based framework is then coupled to an UKF to jointly identify unmeasured inputs and nonlinear finite element (FE) model parameters. The proposed approach systematically assimilates different structural response quantities to estimate TAR and FE model parameters and, as a result, updates the FE model and unknown external excitation estimates. The framework is validated using simulated experiments on a realistic three-dimensional nonlinear steel frame subjected to unknown seismic ground motion. It is demonstrated that assuming relatively low order TAR model for the unknown input leads to precise reconstruction and unbiased estimation of nonlinear model parameters that are most sensitive to measured system response. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
[41]   Nonlinear finite element model updating with a decentralized approach [J].
Ni, P. H. ;
Ye, X. W. .
SMART STRUCTURES AND SYSTEMS, 2019, 24 (06) :683-692
[42]   Nonlinear Structural Finite Element Model Updating Using Batch Bayesian Estimation [J].
Ebrahimian, Hamed ;
Astroza, Rodrigo ;
Conte, Joel P. .
MODEL VALIDATION AND UNCERTAINTY QUANTIFICATION, VOL 3, 2015, :35-43
[43]   Damage detection and parameter identification by finite element model updating [J].
Anne Teughels ;
Guido De Roeck .
Archives of Computational Methods in Engineering, 2005, 12 :123-164
[44]   Nonlinear Reduced Models for State and Parameter Estimation [J].
Cohen, Albert ;
Dahmen, Wolfgang ;
Mula, Olga ;
Nichols, James .
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2022, 10 (01) :227-267
[45]   Nonlinear finite element model updating for damage identification of civil structures using batch Bayesian estimation [J].
Ebrahimian, Hamed ;
Astroza, Rodrigo ;
Conte, Joel P. ;
de Callafon, Raymond A. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 84 :194-222
[46]   Joint input-response estimation for structural systems based on reduced-order models and vibration data from a limited number of sensors [J].
Lourens, E. ;
Papadimitriou, C. ;
Gillijns, S. ;
Reynders, E. ;
De Roeck, G. ;
Lombaert, G. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2012, 29 :310-327
[47]   Application of Neural Networks to External Parameter Estimation for Nonlinear Vehicle Models [J].
Gräber T. ;
Schäfer M. ;
Unterreiner M. ;
Schramm D. .
SAE International Journal of Connected and Automated Vehicles, 2021, 4 (03) :297-312
[48]   A SEASONAL AUTO-REGRESSIVE MODEL BASED SUPPORT VECTOR REGRESSION PREDICTION METHOD FOR H5N1 AVIAN INFLUENZA ANIMAL EVENTS [J].
Zhang, Jie ;
Lu, Jie ;
Zhang, Guangquan .
INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2011, 10 (02) :199-230
[49]   Finite element model updating for the Tsing Ma Bridge tower based on surrogate models [J].
Cheng, Xiao-Xiang ;
Fan, Jian-Hua ;
Xiao, Zhi-Hong .
JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2022, 41 (02) :500-518
[50]   Data-Driven Parameter Estimation for Models with Nonlinear Parameter Dependence [J].
Goel, Ankit ;
Bernstein, Dennis S. .
2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, :1470-1475