Auto-regressive model based input and parameter estimation for nonlinear finite element models

被引:33
作者
Castiglione, Juan [1 ]
Astroza, Rodrigo [1 ]
Azam, Saeed Eftekhar [2 ]
Linzell, Daniel [2 ]
机构
[1] Univ Andes, Fac Engn & Appl Sci, Bogota, Colombia
[2] Univ Nebraska, Dept Civil Engn, Lincoln, NE 68583 USA
基金
美国国家科学基金会;
关键词
Model updating; Input estimation; Finite element model; Kalman filter; Auto-regressive model; MINIMUM-VARIANCE INPUT; EXTENDED KALMAN FILTER; STATE ESTIMATION; STRUCTURAL SYSTEMS; FORCE IDENTIFICATION; DAMAGE DETECTION; EARTHQUAKE; SCHEME;
D O I
10.1016/j.ymssp.2020.106779
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A novel framework to accurately estimate nonlinear structural model parameters and unknown external inputs (i.e., loads) using sparse sensor networks is proposed and validated. The framework assumes a time-varying auto-regressive (TAR) model for unknown loads and develops a strategy to simultaneously estimate those loads and parameters of the nonlinear model using an unscented Kalman filter (UKF). First, it is confirmed that a Kalman filter (KF) allows to estimate TAR parameters for a measured, earthquake, acceleration time-history. The KF-based framework is then coupled to an UKF to jointly identify unmeasured inputs and nonlinear finite element (FE) model parameters. The proposed approach systematically assimilates different structural response quantities to estimate TAR and FE model parameters and, as a result, updates the FE model and unknown external excitation estimates. The framework is validated using simulated experiments on a realistic three-dimensional nonlinear steel frame subjected to unknown seismic ground motion. It is demonstrated that assuming relatively low order TAR model for the unknown input leads to precise reconstruction and unbiased estimation of nonlinear model parameters that are most sensitive to measured system response. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [2] Uniqueness of Iris Pattern Based on the Auto-Regressive Model
    Schmid, Natalia A.
    Valenti, Matthew C.
    Hampel, Katelyn M.
    Zuo, Jinyu
    Das, Priyanka
    Schuckers, Stephanie
    Skufca, Joseph
    SENSORS, 2024, 24 (09)
  • [3] Point and Interval Estimation Method for Auto-Regressive Model with Nonnormal Error
    Lim, Bo Mi
    Kim, Jongwoo
    Kim, Sung-Shick
    Baek, Jun-Geol
    2013 IEEE INTERNATIONAL CONGRESS ON BIG DATA, 2013, : 379 - 386
  • [4] Estimation of Auto-Regressive models for time series using Binary or Quantized Data
    Auber, R.
    Pouliquen, M.
    Pigeon, E.
    M'Saad, M.
    Gehan, O.
    Chapon, P. A.
    Moussay, S.
    IFAC PAPERSONLINE, 2018, 51 (15): : 581 - 586
  • [5] Auto-Regressive Models of Non-Stationary Time Series with Finite Length
    费万春
    白伦
    TsinghuaScienceandTechnology, 2005, (02) : 162 - 168
  • [6] Time-varying parameter auto-regressive models for autocovariance nonstationary time series
    WanChun Fei
    Lun Bai
    Science in China Series A: Mathematics, 2009, 52 : 577 - 584
  • [7] Time-varying parameter auto-regressive models for autocovariance nonstationary time series
    Fei WanChun
    Bai Lun
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (03): : 577 - 584
  • [8] Time-varying parameter auto-regressive models for autocovariance nonstationary time series
    FEI WanChun & BAI Lun College of Textile and Clothing Engineering
    Science China Mathematics, 2009, (03) : 577 - 584
  • [9] Fuzzy auto-regressive model and its applications
    Ozawa, K
    Watanabe, T
    Kanke, M
    FIRST INTERNATIONAL CONFERENCE ON KNOWLEDGE-BASED INTELLIGENT ELECTRONIC SYSTEMS, PROCEEDINGS 1997 - KES '97, VOLS 1 AND 2, 1997, : 112 - 117
  • [10] Damage Detection Using Vector Auto-Regressive Models
    Huang, Zongming
    Liu, Gang
    Todd, Michael
    Mao, Zhu
    HEALTH MONITORING OF STRUCTURAL AND BIOLOGICAL SYSTEMS 2013, 2013, 8695