Genetic Algorithm for Community Detection in Biological Networks

被引:10
作者
Ben M'Barek, Marwa [1 ]
Borgi, Amel [1 ,2 ]
Bedhiafi, Walid [3 ,4 ]
Ben Hmida, Sana [5 ]
机构
[1] Univ Tunis El Manar, Fac Sci Tunis, LIPAH, Tunis 2092, Tunisia
[2] Univ Tunis El Manar, Inst Super Informat, Tunis 1002, Tunisia
[3] Univ Tunis El Manar, Fac Sci Tunis, Lab Genet Immunol & Pathol Humaines, Tunis 2092, Tunisia
[4] UPMC Univ Paris 06, Dept Immunol Immunopathol Immunotherapy, Sorbonne Univ, INSERM,UMRS959, Paris, France
[5] Univ Paris 09, PSL Res Univ, CNRS, LAMSADE,UMR 7243, Paris, France
来源
KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS (KES-2018) | 2018年 / 126卷
关键词
community detection; biological networks; Gene Ontology; Genetic Algorithm; Kyoto Encyclopedia of Genes and Genomes (KEGG) database; SEMANTIC SIMILARITY; ONTOLOGY; GO;
D O I
10.1016/j.procs.2018.07.233
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We are interested in the detection of communities in biological networks. We focus more precisely on gene interaction networks. They represent protein-protein or gene-gene interactions. A community in such networks corresponds to a set of proteins or genes that collaborate at the same cellular function. Our goal is to identify such network or community from gene annotation sources such as Gene Ontology (GO). In this paper, we propose a Genetic Algorithm (GA) based approach to discover communities in a gene interaction network. Special solution coding and mutation operator are introduced. Otherwise, we propose a specific fitness function based on similarity measure and interaction value between genes. Experiments on real data extracted from the well-known Kyoto Encyclopedia of Genes and Genomes (KEGG) database show the ability of the proposed method to successfully detect existing or even new communities. (C) 2018 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:195 / 204
页数:10
相关论文
共 31 条
[1]  
[Anonymous], 2001, BIOTECH SOFTW INTERN, DOI DOI 10.1089/152791601750294344
[2]  
[Anonymous], 2003, RNA DEFINITION RNA M
[3]  
[Anonymous], P EUR C COMPL SYST A
[4]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[5]   The gene ontology annotation (GOA) project: Implementation of GO in SWISS-PROT, TrEMBL, and InterPro [J].
Camon, E ;
Magrane, M ;
Barrell, D ;
Binns, D ;
Fleischmann, W ;
Kersey, P ;
Mulder, N ;
Oinn, T ;
Maslen, J ;
Cox, A ;
Apweiler, R .
GENOME RESEARCH, 2003, 13 (04) :662-672
[6]   Reactome: a database of reactions, pathways and biological processes [J].
Croft, David ;
O'Kelly, Gavin ;
Wu, Guanming ;
Haw, Robin ;
Gillespie, Marc ;
Matthews, Lisa ;
Caudy, Michael ;
Garapati, Phani ;
Gopinath, Gopal ;
Jassal, Bijay ;
Jupe, Steven ;
Kalatskaya, Irina ;
Mahajan, Shahana ;
May, Bruce ;
Ndegwa, Nelson ;
Schmidt, Esther ;
Shamovsky, Veronica ;
Yung, Christina ;
Birney, Ewan ;
Hermjakob, Henning ;
D'Eustachio, Peter ;
Stein, Lincoln .
NUCLEIC ACIDS RESEARCH, 2011, 39 :D691-D697
[7]   Community detection in graphs [J].
Fortunato, Santo .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2010, 486 (3-5) :75-174
[8]   Community structure in social and biological networks [J].
Girvan, M ;
Newman, MEJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (12) :7821-7826
[9]  
Goldberg D. E., 1991, Foundations of Genetic Algorithms, V1, P69
[10]  
Goldberg DE., 1989, Genetic algorithms in search, optimization and machine learning