Pyridinic-Nitrogen-Dominated Graphene Aerogels with Fe-N-C Coordination for Highly Efficient Oxygen Reduction Reaction

被引:372
作者
Cui, Xiaoyang [1 ]
Yang, Shubin [2 ]
Yan, Xingxu [1 ]
Leng, Jiugou [2 ]
Shuang, Shuang [1 ]
Ajayan, Pulickel M. [3 ]
Zhang, Zhengjun [4 ]
机构
[1] Tsinghua Univ, State Key Lab New Ceram & Fine Proc, Sch Mat Sci & Engn, Beijing 100084, Peoples R China
[2] Beihang Univ, Sch Mat Sci & Engn, Minist Educ, Key Lab Aerosp Adv Mat & Performance, Beijing 100191, Peoples R China
[3] Rice Univ, Dept Mat Sci & Nano Engn, Houston, TX 77005 USA
[4] Tsinghua Univ, Key Lab Adv Mat, MOE, Sch Mat Sci & Engn, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
iron; nitrogen-doped graphene; oxygen reduction reaction; pyridinic nitrogen; HIGH ELECTROCATALYTIC ACTIVITY; METAL-FREE ELECTROCATALYSTS; DOPED GRAPHENE; ACTIVE-SITES; FUEL-CELLS; SYNERGISTIC CATALYST; CATHODE CATALYSTS; CARBON; IRON; PERFORMANCE;
D O I
10.1002/adfm.201601492
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Here, pyridinic nitrogen dominated graphene aerogels with/without iron incorporation (Fe-NG and NG) are prepared via a facile and effective process including freeze-drying of chemically reduced graphene oxide with/without iron precursor and thermal treatment in NH3. A high doping level of nitrogen has been achieved (up to 12.2 at% for NG and 11.3 at% for Fe-NG) with striking enrichment of pyridinic nitrogen (up to 90.4% of the total nitrogen content for NG, and 82.4% for Fe-NG). It is found that the Fe-NG catalysts display a more positive onset potential, higher current density, and better four-electron selectivity for ORR than their counterpart without iron incorporation. The most active Fe-NG exhibits outstanding ORR catalytic activity, high durability, and methanol tolerance ability that are comparable to or even superior to those of the commercial Pt/C catalyst at the same catalyst loading in alkaline environment. The excellent ORR performance can be ascribed to the synergistic effect of pyridinic N and Fe-N (x) sites (where iron probably coordinates with pyridinic N) that serve as active centers for ORR. Our Fe-NG can be developed into cost-effective and durable catalysts as viable replacements of the expensive Pt-based catalysts in practical fuel cell applications.
引用
收藏
页码:5708 / 5717
页数:10
相关论文
共 67 条
[1]  
[Anonymous], 2009, ANGEW CHEM INT EDIT
[2]  
[Anonymous], 2011, ANGEW CHEM-GER EDIT
[3]  
Carrette L, 2000, CHEMPHYSCHEM, V1, P162, DOI 10.1002/1439-7641(20001215)1:4<162::AID-CPHC162>3.0.CO
[4]  
2-Z
[5]   Fe/N/C non-precious catalysts for PEM fuel cells: Influence of the structural parameters of pristine commercial carbon blacks on their activity for oxygen reduction [J].
Charreteur, Fanny ;
Jaouen, Frederic ;
Ruggeri, Stephane ;
Dodelet, Jean-Pol .
ELECTROCHIMICA ACTA, 2008, 53 (06) :2925-2938
[6]   Amorphous carbon enriched with pyridinic nitrogen as an efficient metal-free electrocatalyst for oxygen reduction reaction [J].
Chen, Jingyan ;
Wang, Xin ;
Cui, Xiaoqiang ;
Yang, Guangmin ;
Zheng, Weitao .
CHEMICAL COMMUNICATIONS, 2014, 50 (05) :557-559
[7]   Three-Dimensional Nitrogen-Doped Graphene Nanoribbons Aerogel as a Highly Effi cient Catalyst for the Oxygen Reduction Reaction [J].
Chen, Liang ;
Du, Ran ;
Zhu, Jinghan ;
Mao, Yueyuan ;
Xue, Cheng ;
Zhang, Na ;
Hou, Yanglong ;
Zhang, Jin ;
Yi, Tao .
SMALL, 2015, 11 (12) :1423-1429
[8]   Nitrogen-Doped Carbon Nanocages as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction [J].
Chen, Sheng ;
Bi, Jiyu ;
Zhao, Yu ;
Yang, Lijun ;
Zhang, Chen ;
Ma, Yanwen ;
Wu, Qiang ;
Wang, Xizhang ;
Hu, Zheng .
ADVANCED MATERIALS, 2012, 24 (41) :5593-5597
[9]   A review on non-precious metal electrocatalysts for PEM fuel cells [J].
Chen, Zhongwei ;
Higgins, Drew ;
Yu, Aiping ;
Zhang, Lei ;
Zhang, Jiujun .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3167-3192
[10]   Binary and Ternary Doping of Nitrogen, Boron, and Phosphorus into Carbon for Enhancing Electrochemical Oxygen Reduction Activity [J].
Choi, Chang Hyuck ;
Park, Sung Hyeon ;
Woo, Seong Ihl .
ACS NANO, 2012, 6 (08) :7084-7091