Some finite p-groups with bounded index of every cyclic subgroup in its normal closure

被引:17
作者
Lv, Heng [1 ]
Zhou, Wei [1 ]
Yu, Dapeng [2 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[2] Chongqing Univ Arts & Sci, Dept Math & Stat, Chongqing 402160, Peoples R China
基金
中国国家自然科学基金;
关键词
Finite p-group; J-group; Normal closure; Regular p-group; GENERALIZED DEDEKIND GROUPS; BREADTH;
D O I
10.1016/j.jalgebra.2011.02.046
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite p-group. G is called a BI(p(m))-group if vertical bar < a >(G) : < a >vertical bar <= p(m) for every a is an element of G. In this paper, we mainly study the properties of BI(2)-groups and BI(p(2))-groups for p >= 3, and we study some B(I)(p(m))-groups (m >= 3) with some additional requirement. 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:169 / 179
页数:11
相关论文
共 8 条
  • [1] [Anonymous], 2004, GAP GROUPS ALGORITHM
  • [2] BERKOVICH Y, 2008, GROUPS PRIME ORDER, V2
  • [3] BREADTH OF A FINITE P-GROUP
    GALLIAN, JA
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1972, 126 (03) : 224 - &
  • [4] On generalized Dedekind groups
    Guo, X.
    Wang, J.
    [J]. ACTA MATHEMATICA HUNGARICA, 2009, 122 (1-2) : 37 - 44
  • [5] On generalized dedekind groups and Tarski super Monsters
    Herzog, M
    Longobardi, P
    Maj, M
    Mann, A
    [J]. JOURNAL OF ALGEBRA, 2000, 226 (02) : 690 - 713
  • [6] HUPPERT EGI, 1967, GRUNDLEHREN MATH WIS, V134
  • [7] Ninomiya Y., 1994, Math. J. Okayama Univ., V36, P1
  • [8] BREADTH AND COMMUTATOR SUBGROUPS OF P-GROUPS
    VAUGHANLEE, MR
    [J]. JOURNAL OF ALGEBRA, 1974, 32 (02) : 278 - 285