Optimized explicit Runge-Kutta pair of orders 9(8)

被引:33
作者
Tsitouras, C [1 ]
机构
[1] Natl Tech Univ Athens, Dept Math, GR-15780 Athens, Greece
关键词
initial value problems; high order; embedded pairs; steepest descent;
D O I
10.1016/S0168-9274(01)00025-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A fully explicit algorithm for deriving a Runge-Kutta pair of orders 9(8) is presented in this paper. After that an optimal pair is given, which is found to outperform all other published Runge-Kutta pairs when severe tolerances are required. (C) 2001 IMACS. Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:123 / 134
页数:12
相关论文
共 20 条
  • [1] Butcher J.C., 1964, J. Aust. Math. Soc, V4, P179, DOI [10.1017/S1446788700023387, DOI 10.1017/S1446788700023387]
  • [2] Butcher J. C., 1987, The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods
  • [3] IMPLICIT RUNGE-KUTTA PROCESSES
    BUTCHER, JC
    [J]. MATHEMATICS OF COMPUTATION, 1964, 18 (85) : 50 - &
  • [4] Dormand J., 1980, J. Comput. Appl. Math., V6, P19, DOI DOI 10.1016/0771-050X(80)90013-3
  • [5] 2 FORTRAN PACKAGES FOR ASSESSING INITIAL-VALUE METHODS
    ENRIGHT, WH
    PRYCE, JD
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1987, 13 (01): : 1 - 27
  • [6] FEHLBERG E, 1969, R287 NASA TR GC MARS
  • [7] HAIRER E, 1978, J I MATH APPL, V21, P47
  • [8] Hairer Ernst, 1993, Springer Ser. Comput. Math., V8
  • [9] COMPARING NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS
    HULL, TE
    ENRIGHT, WH
    FELLEN, BM
    SEDGWICK, AE
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1972, 9 (04) : 603 - 637
  • [10] *MATHW INC, 1999, MATL US MATL 5 3 REL