Differentiation to fractional orders and the fractional telegraph equation

被引:41
作者
Camargo, R. Figueiredo [1 ]
Chiacchio, Ary O. [1 ]
de Oliveira, E. Capelas [2 ]
机构
[1] Univ Estadual Campinas, IMECC, Dept Matemat, BR-13081970 Campinas, SP, Brazil
[2] Univ Estadual Campinas, IMECC, Dept Matemat Aplicada, BR-13081970 Campinas, SP, Brazil
关键词
D O I
10.1063/1.2890375
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using methods of differential and integral calculus, we present and discuss the calculation of a fractional Green function associated with the one-dimensional case of the so-called general fractional telegraph equation with one space variable. This is a fractional partial differential equation with constant coefficients. The equation is solved by means of juxtaposition of transforms, i.e., we introduce the Laplace transform in the time variable and the Fourier transform in the space variable. Several particular cases are discussed in terms of the parameters. Some known results are recovered. As a by-product of our main result, we obtain two new relations involving the two-parameter Mittag-Leffler function. (C) 2008 American Institute of Physics.
引用
收藏
页数:12
相关论文
共 38 条
  • [1] Fractional-order dynamical models of love
    Ahmad, Wajdi M.
    El-Khazali, Reyad
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 33 (04) : 1367 - 1375
  • [2] [Anonymous], 2006, THEORY APPL FRACTION
  • [3] [Anonymous], SPECIAL FUNCTIONS AP
  • [4] Solution of fractional differential equations by using differential transform method
    Arikoglu, Aytac
    Ozkol, Ibrahim
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 34 (05) : 1473 - 1481
  • [5] DEFINITION OF PHYSICALLY CONSISTENT DAMPING LAWS WITH FRACTIONAL DERIVATIVES
    BEYER, H
    KEMPFLE, S
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1995, 75 (08): : 623 - 635
  • [6] Bhatti M., 2007, Int. J. Contemp. Math. Sci., V2, P943, DOI DOI 10.12988/IJCMS.2007.07096
  • [7] CAMARGO RF, 2005, THESIS UNICAMP
  • [8] CAMARGO RF, 2007, CMPD2 C COMP MATH PO
  • [9] CAMARGO RF, 2006, 162006 UN
  • [10] VIBRATIONS OF AN INFINITE VISCOELASTIC LAYER WITH A DISSIPATIVE MEMORY
    CAPUTO, M
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1974, 56 (03) : 897 - 904