Wavelet U-Net for Medical Image Segmentation

被引:11
作者
Ying Li [1 ]
Yu Wang [1 ]
Tuo Leng [1 ]
Wen Zhijie [2 ]
机构
[1] Shanghai Univ, Sch Comp Engn & Sci, Shanghai, Peoples R China
[2] Shanghai Univ, Coll Sci, Shanghai, Peoples R China
来源
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2020, PT I | 2020年 / 12396卷
基金
中国国家自然科学基金;
关键词
Medical image segmentation; Deep learning; Wavelet transform; Attention mechanism;
D O I
10.1007/978-3-030-61609-0_63
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Biomedical image segmentation plays an increasingly important role in medical diagnosis. However, it remains a challenging task to segment the medical images due to their diversity of structures. Convolutional networks (CNNs) commonly uses pooling to enlarge the receptive field, which usually results in irreversible information loss. In order to solve this problem, we rethink the alternative method of pooling operation. In this paper, we embed the wavelet transform into the U-Net architecture to achieve the purpose of down-sampling and up-sampling which we called wavelet U-Net (WU-Net). Specifically, in the encoder module, we use discrete wavelet transform (DWT) to replace the pooling operation to reduce the resolution of the image, and use inverse wavelet transform (IWT) to gradually restore the resolution in the decoder module. Besides, we use Densely Cross-level Connection strategy to encourage feature re-use and to enhance the complementarity between cross-level information. Furthermore, in Attention Feature Fusion module (AFF), we introduce the channel attention mechanism to select useful feature maps, which can effectively improve the segmentation performance of the network. We evaluated this model on the digital retinal images for vessel extraction (DRIVE) dataset and the child heart and health study (CHASEDB1) dataset. The results show that the proposed method outperforms the classic U-Net method and other state-of-the-art methods on both datasets.
引用
收藏
页码:800 / 810
页数:11
相关论文
共 27 条
[1]   Recurrent residual U-Net for medical image segmentation [J].
Alom, Md Zahangir ;
Yakopcic, Chris ;
Hasan, Mahmudul ;
Taha, Tarek M. ;
Asari, Vijayan K. .
JOURNAL OF MEDICAL IMAGING, 2019, 6 (01)
[2]  
[Anonymous], 2017, Wavelet Convolutional Neural Networks for Texture Classification
[3]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[4]   Wavelet Convolutional Neural Networks for Handwritten Digits Recognition [J].
Ben Chaabane, Chiraz ;
Mellouli, Dorra ;
Hamdani, Tarek M. ;
Alimi, Adel M. ;
Abraham, Ajith .
HYBRID INTELLIGENT SYSTEMS, HIS 2017, 2018, 734 :305-310
[5]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[6]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[7]  
Chen LB, 2017, IEEE INT SYMP NANO, P1, DOI 10.1109/NANOARCH.2017.8053709
[8]  
Chui C.K., 1992, An Introduction to Wavelets
[9]  
Fujieda Shin, 2018, Wavelet convolutional neural networks
[10]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778