Grain-size effects on the deformation in nanocrystalline multi-principal element alloy

被引:25
作者
Roy, Ankit [1 ]
Devanathan, Ram [2 ]
Johnson, Duane D. [3 ,4 ]
Balasubramanian, Ganesh [1 ]
机构
[1] Lehigh Univ, Dept Mech Engn & Mech, Bethlehem, PA 18015 USA
[2] Pacific Northwest Natl Lab, Richland, WA 99354 USA
[3] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA
[4] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA
关键词
Multi -principal element alloys; Nanocrystalline grains; Molecular dynamics; Hall-petch relation; Dislocation slip; HIGH-ENTROPY ALLOYS; MOLECULAR-DYNAMICS; MECHANICAL-BEHAVIOR; PLASTIC-DEFORMATION; PHASE; PREDICTION; BOUNDARIES; METALS;
D O I
10.1016/j.matchemphys.2021.125546
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Multi-principal element alloys (MPEAs) continue to garner great interest due to their potentially remarkable mechanical properties, especially at elevated temperatures for key structural and energy applications. Despite extensive literature examining material properties of MPEAs at various compositions, much less is reported about the role of grain size on the mechanical properties. Here, we examine a representative nanocrystalline BCC refractory MPEA and identify a crossover from a Hall-Petch to inverse-Hall-Petch relation. While the considered MPEA predominantly assumes a single-phase BCC lattice, the presence of grain boundaries imparts amorphous distributions that increase with decreasing grain size (i.e., increasing grain boundary volume fraction). Using molecular dynamics simulations, we find that the average flow stress of the MPEA increases with decreasing average grain size, but below a critical grain size of 23.2 nm the average flow stress decreases. This change in the deformation behavior is driven by the transition from dislocation slip to grain-boundary slip as the predominant mechanism. The crossover to inverse-Hall-Petch regime is correlated to dislocation stacking at the grain boundary when dislocation density reaches a maximum.
引用
收藏
页数:8
相关论文
共 60 条
[1]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[2]   Hall-Petch and inverse Hall-Petch relations in high-entropy CoNiFeAlxCu1-x alloys [J].
Chen, Shuai ;
Aitken, Zachary H. ;
Wu, Zhaoxuan ;
Yu, Zhigen ;
Banerjee, Rajarshi ;
Zhang, Yong-Wei .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 773
[3]   ON THE VALIDITY OF THE HALL-PETCH RELATIONSHIP IN NANOCRYSTALLINE MATERIALS [J].
CHOKSHI, AH ;
ROSEN, A ;
KARCH, J ;
GLEITER, H .
SCRIPTA METALLURGICA, 1989, 23 (10) :1679-1683
[4]  
Conrad H, 1967, MATERIAL SCI ENG, V2, P7, DOI [DOI 10.1016/0025-5416(67)90032-8, 10.1016/0025-5416(67)90032-8]
[5]  
COTTRELL AH, 1958, T AM I MIN MET ENG, V212, P192
[6]  
Courtney T.H., 2005, MECH BEHAV MAT, V2nd
[7]  
Faken D., 1994, Computational Materials Science, V2, P279, DOI 10.1016/0927-0256(94)90109-0
[8]   Frontiers in atomistic simulations of high entropy alloys [J].
Ferrari, Alberto ;
Dutta, Biswanath ;
Gubaev, Konstantin ;
Ikeda, Yuji ;
Srinivasan, Prashanth ;
Grabowski, Blazej ;
Koermann, Fritz .
JOURNAL OF APPLIED PHYSICS, 2020, 128 (15)
[9]   High entropy alloys: A focused review of mechanical properties and deformation mechanisms [J].
George, E. P. ;
Curtin, W. A. ;
Tasan, C. C. .
ACTA MATERIALIA, 2020, 188 :435-474
[10]   High-entropy alloys [J].
George, Easo P. ;
Raabe, Dierk ;
Ritchie, Robert O. .
NATURE REVIEWS MATERIALS, 2019, 4 (08) :515-534