Quantum circuit complexity of one-dimensional topological phases

被引:50
作者
Huang, Yichen [1 ]
Chen, Xie [1 ,2 ,3 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] CALTECH, Dept Phys, Pasadena, CA 91125 USA
[3] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
来源
PHYSICAL REVIEW B | 2015年 / 91卷 / 19期
关键词
MATRIX PRODUCT STATES; BOND GROUND-STATES; SPIN CHAINS; SYMMETRY-BREAKING; ANTIFERROMAGNETS; GAP;
D O I
10.1103/PhysRevB.91.195143
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Topological quantum states cannot be created from product states with local quantum circuits of constant depth and are in this sense more entangled than topologically trivial states, but how entangled are they? Here we quantify the entanglement in one-dimensional topological states by showing that local quantum circuits of linear depth are necessary to generate them from product states. We establish this linear lower bound for both bosonic and fermionic one-dimensional topological phases and use symmetric circuits for phases with symmetry. We also show that the linear lower bound can be saturated by explicitly constructing circuits generating these topological states. The same results hold for local quantum circuits connecting topological states in different phases.
引用
收藏
页数:10
相关论文
共 42 条
[11]   Topological phases of fermions in one dimension [J].
Fidkowski, Lukasz ;
Kitaev, Alexei .
PHYSICAL REVIEW B, 2011, 83 (07)
[12]  
Haah J., ARXIV14072926
[13]   Order Parameter for Symmetry-Protected Phases in One Dimension [J].
Haegeman, Jutho ;
Perez-Garcia, David ;
Cirac, Ignacio ;
Schuch, Norbert .
PHYSICAL REVIEW LETTERS, 2012, 109 (05)
[16]   An area law for one-dimensional quantum systems [J].
Hastings, M. B. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,
[17]   Quasiadiabatic continuation of quantum states: The stability of topological ground-state degeneracy and emergent gauge invariance [J].
Hastings, MB ;
Wen, XG .
PHYSICAL REVIEW B, 2005, 72 (04)
[18]   Spectral gap and exponential decay of correlations [J].
Hastings, MB ;
Koma, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 265 (03) :781-804
[19]   Lieb-Schultz-Mattis in higher dimensions [J].
Hastings, MB .
PHYSICAL REVIEW B, 2004, 69 (10)
[20]   HIDDEN Z2XZ2 SYMMETRY-BREAKING IN HALDANE-GAP ANTIFERROMAGNETS [J].
KENNEDY, T ;
TASAKI, H .
PHYSICAL REVIEW B, 1992, 45 (01) :304-307