Quantum circuit complexity of one-dimensional topological phases

被引:50
作者
Huang, Yichen [1 ]
Chen, Xie [1 ,2 ,3 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] CALTECH, Dept Phys, Pasadena, CA 91125 USA
[3] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
来源
PHYSICAL REVIEW B | 2015年 / 91卷 / 19期
关键词
MATRIX PRODUCT STATES; BOND GROUND-STATES; SPIN CHAINS; SYMMETRY-BREAKING; ANTIFERROMAGNETS; GAP;
D O I
10.1103/PhysRevB.91.195143
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Topological quantum states cannot be created from product states with local quantum circuits of constant depth and are in this sense more entangled than topologically trivial states, but how entangled are they? Here we quantify the entanglement in one-dimensional topological states by showing that local quantum circuits of linear depth are necessary to generate them from product states. We establish this linear lower bound for both bosonic and fermionic one-dimensional topological phases and use symmetric circuits for phases with symmetry. We also show that the linear lower bound can be saturated by explicitly constructing circuits generating these topological states. The same results hold for local quantum circuits connecting topological states in different phases.
引用
收藏
页数:10
相关论文
共 42 条
[1]   RIGOROUS RESULTS ON VALENCE-BOND GROUND-STATES IN ANTIFERROMAGNETS [J].
AFFLECK, I ;
KENNEDY, T ;
LIEB, EH ;
TASAKI, H .
PHYSICAL REVIEW LETTERS, 1987, 59 (07) :799-802
[2]   VALENCE BOND GROUND-STATES IN ISOTROPIC QUANTUM ANTIFERROMAGNETS [J].
AFFLECK, I ;
KENNEDY, T ;
LIEB, EH ;
TASAKI, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 115 (03) :477-528
[3]   Detecting Majorana fermions in quasi-one-dimensional topological phases using nonlocal order parameters [J].
Bahri, Yasaman ;
Vishwanath, Ashvin .
PHYSICAL REVIEW B, 2014, 89 (15)
[4]   Lieb-robinson bounds and the generation of correlations and topological quantum order [J].
Bravyi, S. ;
Hastings, M. B. ;
Verstraete, F. .
PHYSICAL REVIEW LETTERS, 2006, 97 (05)
[5]   Topological quantum order: Stability under local perturbations [J].
Bravyi, Sergey ;
Hastings, Matthew B. ;
Michalakis, Spyridon .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (09)
[6]   Complete classification of one-dimensional gapped quantum phases in interacting spin systems [J].
Chen, Xie ;
Gu, Zheng-Cheng ;
Wen, Xiao-Gang .
PHYSICAL REVIEW B, 2011, 84 (23)
[7]   Classification of gapped symmetric phases in one-dimensional spin systems [J].
Chen, Xie ;
Gu, Zheng-Cheng ;
Wen, Xiao-Gang .
PHYSICAL REVIEW B, 2011, 83 (03)
[8]   Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order [J].
Chen, Xie ;
Gu, Zheng-Cheng ;
Wen, Xiao-Gang .
PHYSICAL REVIEW B, 2010, 82 (15)
[9]   PREROUGHENING TRANSITIONS IN CRYSTAL-SURFACES AND VALENCE-BOND PHASES IN QUANTUM SPIN CHAINS [J].
DENNIJS, M ;
ROMMELSE, K .
PHYSICAL REVIEW B, 1989, 40 (07) :4709-4734
[10]   FINITELY CORRELATED STATES ON QUANTUM SPIN CHAINS [J].
FANNES, M ;
NACHTERGAELE, B ;
WERNER, RF .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 144 (03) :443-490